【題目】如圖,在Rt△ABC中,∠B=90°,∠A=30°,以點(diǎn)A為圓心,BC長(zhǎng)為半徑畫(huà)弧交AB于點(diǎn)D,分別以點(diǎn)A、D為圓心,AB長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)E,連接AE,DE,則∠EAD的余弦值是(
A.
B.
C.
D.

【答案】B
【解析】解:如圖所示:設(shè)BC=x, ∵在Rt△ABC中,∠B=90°,∠A=30°,
∴AC=2BC=2x,AB= BC= x,
根據(jù)題意得:AD=BC=x,AE=DE=AB= x,
作EM⊥AD于M,則AM= AD= x,
在Rt△AEM中,cos∠EAD= = =
故選:B.

設(shè)BC=x,由含30°角的直角三角形的性質(zhì)得出AC=2BC=2x,求出AB= BC= x,根據(jù)題意得出AD=BC=x,AE=DE=AB= x,作EM⊥AD于M,由等腰三角形的性質(zhì)得出AM= AD= x,在Rt△AEM中,由三角函數(shù)的定義即可得出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(問(wèn)題探究)

(1)如圖①已知銳角△ABC,分別以AB、AC為腰,在△ABC的外部作等腰RtABDRtACE,連接CD、BE,是猜想CD、BE的大小關(guān)系_____________ ;(不必證明)

(深入探究)

(2)如圖②△ABC、ADE都是等腰直角三角形,點(diǎn)D在邊BC上(不與B、C重合),連接EC,則線(xiàn)段 BC,DC,EC 之間滿(mǎn)足的等量關(guān)系式為________________ ;(不必證明) 線(xiàn)段 AD2,BD2,CD2之間滿(mǎn)足的等量關(guān)系,并證明你的結(jié)論;

(拓展應(yīng)用)

(3)如圖③,在四邊形 ABCD ,ABC=ACB=ADC=45°. BD=9,CD=3,

AD 的長(zhǎng).

① ② ③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校舉行“社會(huì)主義核心價(jià)值觀(guān)”知識(shí)比賽活動(dòng),全體學(xué)生都參加比賽,學(xué)校對(duì)參賽學(xué)生均給與表彰,并設(shè)置一、二、三等獎(jiǎng)和紀(jì)念獎(jiǎng)共四個(gè)獎(jiǎng)項(xiàng),賽后將獲獎(jiǎng)情況繪制成如下所示的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中所給的信息,解答下列問(wèn)題:
(1)該校共有名學(xué)生;
(2)在圖①中,“三等獎(jiǎng)”所對(duì)應(yīng)扇形的圓心角度數(shù)是;
(3)將圖②補(bǔ)充完整;
(4)從該校參加本次比賽活動(dòng)的學(xué)生中隨機(jī)抽查一名.求抽到獲得一等獎(jiǎng)的學(xué)生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,點(diǎn)E是對(duì)角線(xiàn)AC上一點(diǎn),且CE=CD,過(guò)點(diǎn)E作EF⊥AC交AD于點(diǎn)F,連接BE.
(1)求證:DF=AE;
(2)當(dāng)AB=2時(shí),求BE2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是大半圓O的直徑,AO是小半圓M的直徑,點(diǎn)P是大半圓O上一點(diǎn),PA與小半圓M交于點(diǎn)C,過(guò)點(diǎn)C作CD⊥OP于點(diǎn)D.
(1)求證:CD是小半圓M的切線(xiàn);
(2)若AB=8,點(diǎn)P在大半圓O上運(yùn)動(dòng)(點(diǎn)P不與A,B兩點(diǎn)重合),設(shè)PD=x,CD2=y. ①求y與x之間的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
②當(dāng)y=3時(shí),求P,M兩點(diǎn)之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn) D AB的中點(diǎn).

(1)如果點(diǎn) P 在線(xiàn)段 BC 上以 1cm/s 的速度由點(diǎn) B 向點(diǎn) C 運(yùn)動(dòng),同時(shí),點(diǎn) Q 在線(xiàn)段 CA 上由點(diǎn) C 向點(diǎn) A 運(yùn)動(dòng).

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度相等,經(jīng)過(guò) 1 秒后,△BPD △CQP 是否全等,請(qǐng)說(shuō)明理由;

若點(diǎn) Q 的運(yùn)動(dòng)速度與點(diǎn) P 的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn) Q 的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD △CQP 全等?

(2)若點(diǎn) Q 以②中的運(yùn)動(dòng)速度從點(diǎn) C 出發(fā),點(diǎn) P 以原來(lái)的運(yùn)動(dòng)速度從點(diǎn) B 同時(shí)出發(fā),都逆時(shí)針沿△ABC 三邊運(yùn)動(dòng),則經(jīng)過(guò) 后,點(diǎn) P 與點(diǎn) Q 第一次在△ABC 的 邊上相遇?(在橫線(xiàn)上直接寫(xiě)出答案,不必書(shū)寫(xiě)解題過(guò)程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC與△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,則△ABC與△A′B′C′的面積比為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)九年級(jí)數(shù)學(xué)興趣小組想測(cè)量建筑物AB的高度.他們?cè)贑處仰望建筑物頂端,測(cè)得仰角為48°,再往建筑物的方向前進(jìn)6米到達(dá)D處,測(cè)得仰角為64°,求建筑物的高度.(測(cè)角器的高度忽略不計(jì),結(jié)果精確到0.1米)
(參考數(shù)據(jù):sin48°≈ ,tan48°≈ ,sin64°≈ ,tan64°≈2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)y=ax2+bx﹣5(a≠0)與x軸交于點(diǎn)A(﹣5,0)和點(diǎn)B(3,0),與y軸交于點(diǎn)C.

(1)求該拋物線(xiàn)的解析式;
(2)若點(diǎn)E為x軸下方拋物線(xiàn)上的一動(dòng)點(diǎn),當(dāng)SABE=SABC時(shí),求點(diǎn)E的坐標(biāo);
(3)在(2)的條件下,拋物線(xiàn)上是否存在點(diǎn)P,使∠BAP=∠CAE?若存在,求出點(diǎn)P的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案