【題目】在四邊形ABCD中,∠ABC=90°,∠CAB=∠CAD=22.5°,E在AB上,且∠DCE=67.5°,DE⊥AB于E,若AE=1,線段BE的長(zhǎng)為____________.
【答案】.
【解析】由∠CAB=∠CAD=22.5°可得∠DAE=45°,DE⊥AB,所以DE=AE=1.根據(jù)勾股定理可求得AD=6,由∠CAB=∠CAD=22.5°,再根據(jù)角的平分線上的點(diǎn)到角的兩邊的距離相等,可證得BC=CF,然后證得△CBG≌△CFD,再證得△CGE≌△CED,求得∠3=∠4=45°,從而求得CE=AE=1,在△CBE中根據(jù)勾股定理求得BE的長(zhǎng).
∵∠CAB=∠CAD=22.5°,
∴∠DAE=45°,
又∵∠AED=90°,
∴DE=AE=1,
∴AD=.
延長(zhǎng)AD,過點(diǎn)C作CF垂直AD于F,
由∠CAB=∠CAD可知AC為∠BAD的角平分線,
∴CB=CF,
把三角形CDF繞點(diǎn)C旋轉(zhuǎn)到CF與CB重合,則DF與GB重合,如圖:
.
∴CG=CD,∠GCB=∠DCF;
∵CB⊥AB,CF⊥AD,∠CAB=∠CAD=22.5°;
∴∠ACB=∠ACF=67.5°=∠DCE
∴∠DCA=∠2=∠3,∠DCA+∠DCF=∠2+∠GCB=∠DCE=67.5°,
在△DCE與△GCE中
,
∴△DCE≌△GCE(SAS),
∴∠3=∠4=45°,
∵∠CAB=∠CAD=22.5°,∠4=∠CAB+∠ACE,
∴∠ACE=∠CAB=22.5°,
∴CE=AE=1,
在Rt△CBE中,BE2+BC2=CE2,
即BE=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(0,8)、B(8,0)、E(-2,0),動(dòng)點(diǎn) C從原點(diǎn)O出發(fā)沿OA方向以每秒1個(gè)單位長(zhǎng)度向點(diǎn)A運(yùn)動(dòng),動(dòng)點(diǎn)D從點(diǎn)B出發(fā)沿BO方向以每秒2個(gè)單位長(zhǎng)度向點(diǎn)O運(yùn)動(dòng),動(dòng)點(diǎn)C、D同時(shí)出發(fā),當(dāng)動(dòng)點(diǎn)D到達(dá)原點(diǎn)O時(shí),點(diǎn)C、D停止運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t 秒。
(1)填空:直線AB的解析式是_____________________;
(2)求t的值,使得直線CD∥AB;
(3)是否存在時(shí)刻t,使得△ECD是等腰三角形?若存在,請(qǐng)求出一個(gè)這樣的t值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在ABCD中,AE⊥BC,CF⊥AD,垂足分別為E、F,AE、CF分別與BD相交于點(diǎn)G、H,聯(lián)結(jié)AH、CG.
求證:四邊形AGCH是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點(diǎn),連接AE,BF交于點(diǎn)G,將△BCF沿BF對(duì)折,得到△BPF,延長(zhǎng)FP交BA延長(zhǎng)線于點(diǎn)Q,下列結(jié)論正確的個(gè)數(shù)是( )
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2S△BGE .
A.4
B.3
C.2
D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會(huì)的廣泛關(guān)注,綿陽市某中學(xué)對(duì)部分學(xué)生就校園安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了如圖兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問題:
(1)接受問卷調(diào)查的學(xué)生共有人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該中學(xué)共有學(xué)生3000人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該中學(xué)學(xué)生中對(duì)校園安全知識(shí)達(dá)到“了解”和“基本了解”程度的總?cè)藬?shù);
(4)若從對(duì)校園安全知識(shí)達(dá)到了“了解”程度的3個(gè)女生和2個(gè)男生中隨機(jī)抽取2人參加校園安全知識(shí)競(jìng)賽,請(qǐng)用樹狀圖或列表法求出恰好抽到1個(gè)男生和1個(gè)女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知, , ,試說明:BE∥CF.
完善下面的解答過程,并填寫理由或數(shù)學(xué)式:
解:∵ (已知)
∴AE∥ ( 。
∴( 。
∵(已知)
∴ ( 。
∴DC∥AB( 。
∴( 。
即
∵(已知)
∴( )
即
∴BE∥CF( 。 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△DEF,點(diǎn)E在BC邊上,點(diǎn)A在DE邊上,邊EF和邊AC相交于點(diǎn)G.如果AE=EC,∠AEG=∠B,那么添加下列一個(gè)條件后,仍無法判定△DEF與△ABC一定相似的是( )
A. =
B. =
C. =
D. =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD是平行四邊形,AE∥CF,且分別交對(duì)角線BD于點(diǎn)E,F.
(1)求證:△AEB≌△CFD;
(2)連接AF,CE,若∠AFE=∠CFE,求證:四邊形AFCE是菱形.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com