【題目】如圖,已知等邊三角形△ABC邊長(zhǎng)為a,等腰三角形△BDC中,∠BDC=120,∠MDN=60,角的兩邊分別交AB,AC于點(diǎn)M,N,連結(jié)MN.則△AMN的周長(zhǎng)為( )
A.aB.2aC.3aD.4a
【答案】B
【解析】
根據(jù)題目已知條件無(wú)法求出三條邊的長(zhǎng),只能把三條邊長(zhǎng)用其它已知邊長(zhǎng)來(lái)表示,所以需要作輔助線(xiàn),延長(zhǎng)AB至F,使BF=CN,連接DF,通過(guò)證明△BDF≌△CDN及△DMN≌△DMF,從而得出MN=MF,△AMN的周長(zhǎng)等于AB+AC的長(zhǎng).
解:∵△BDC是等腰三角形,且∠BDC=120°
∴∠BCD=∠DBC=30°
∵△ABC是邊長(zhǎng)為3的等邊三角形
∴∠ABC=∠BAC=∠BCA=60°
∴∠DBA=∠DCA=90°
延長(zhǎng)AB至F,使BF=CN,連接DF,
在Rt△BDF和Rt△CND中,BF=CN,DB=DC
∴Rt△BDF≌Rt△CDN(HL),
∴∠BDF=∠CDN,DF=DN
∵∠MDN=60°
∴∠BDM+∠CDN=60°
∴∠BDM+∠BDF=60°,∠FDM=60°=∠MDN,DM為公共邊
∴△DMN≌△DMF(SAS),
∴MN=MF
∴△AMN的周長(zhǎng)是:AM+AN+MN=AM+MB+BF+AN=AB+AC=2a,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)閱讀理解:
如圖①,在△ABC中,若AB=5,AC=3,求BC邊上的中線(xiàn)AD的取值范圍.
解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>△ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到△EBD),把AB,AC,2AD集中在△ABE中,利用三角形三邊的關(guān)系即可判斷.中線(xiàn)AD的取值范圍是___________;
(2)問(wèn)題解決: 如圖②,在△ABC中,D是BC邊上的中點(diǎn),DE⊥DF于點(diǎn)D,DE交AB于點(diǎn)E,DF交AC于點(diǎn)F,連接EF,求證:BE+CF>EF;
(3)問(wèn)題拓展:如圖③,在四邊形ABCD中,∠B+∠D=180°,CB=CD,以C為頂點(diǎn)作∠ECF,使得角的兩邊分別交AB,AD于E、F兩點(diǎn),連接EF,且EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】正方形ABCD的邊長(zhǎng)為3,點(diǎn)E,F(xiàn)分別在射線(xiàn)DC,DA上運(yùn)動(dòng),且DE=DF.連接BF,作EH⊥BF所在直線(xiàn)于點(diǎn)H,連接CH.
(1)如圖1,若點(diǎn)E是DC的中點(diǎn),CH與AB之間的數(shù)量關(guān)系是 ;
(2)如圖2,當(dāng)點(diǎn)E在DC邊上且不是DC的中點(diǎn)時(shí),(1)中的結(jié)論是否成立?若成立給出證明;若不成立,說(shuō)明理由;
(3)如圖3,當(dāng)點(diǎn)E,F(xiàn)分別在射線(xiàn)DC,DA上運(yùn)動(dòng)時(shí),連接DH,過(guò)點(diǎn)D作直線(xiàn)DH的垂線(xiàn),交直線(xiàn)BF于點(diǎn)K,連接CK,請(qǐng)直接寫(xiě)出線(xiàn)段CK長(zhǎng)的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在△ABC中,∠A>∠B,分別以點(diǎn)A,C為圓心,大于AC長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,點(diǎn)Q,作直線(xiàn)PQ交AB于點(diǎn)D,再分別以點(diǎn)B,D為圓心,大于BD長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)M,點(diǎn)N,作直線(xiàn)MN交BC于點(diǎn)E,若△CDE是等邊三角形,則∠A=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】求代數(shù)式a+的值,其中a=1007
如圖是小亮和小芳的解答過(guò)程:
(1) 的解法是錯(cuò)誤的;
(2)錯(cuò)誤的原因在于未能正確的運(yùn)用二次根式的性質(zhì): ;
(3)求代數(shù)式a+2的值,其中a=﹣2019.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠C=Rt∠,AC=8cm,BC=6cm,若動(dòng)點(diǎn)P從點(diǎn)C開(kāi)始,按C→A→B→C的路徑運(yùn)動(dòng),且速度為每秒2cm,設(shè)運(yùn)動(dòng)的時(shí)間為t秒。
(1)當(dāng)t為何值時(shí),CP把△ABC的周長(zhǎng)分成相等的兩部分。
(2)當(dāng)t為何值時(shí),CP把△ABC的面積分成相等的兩部分,并求出此時(shí)CP的長(zhǎng);
(3)當(dāng)t為何值時(shí),△BCP為等腰三角形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“中國(guó)漢字聽(tīng)寫(xiě)大會(huì)”是由中央電視臺(tái)和國(guó)家語(yǔ)言文字工作委員會(huì)聯(lián)合主辦的節(jié)目,希望通過(guò)節(jié)目的播出,能吸引更多的人關(guān)注對(duì)漢字文化的學(xué)習(xí).某校也開(kāi)展了一次“漢字聽(tīng)寫(xiě)”比賽,每位參賽學(xué)生聽(tīng)寫(xiě)40個(gè)漢字.比賽結(jié)束后隨機(jī)抽取部分學(xué)生的聽(tīng)寫(xiě)結(jié)果,按聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x繪制成了以下不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息回答下列問(wèn)題:
(1)本次共隨機(jī)抽取了 名學(xué)生進(jìn)行調(diào)查,聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x在 范圍的人數(shù)最多;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)各組的組中值如下表所示.若用各組的組中值代表各組每位學(xué)生聽(tīng)寫(xiě)正確的漢字個(gè)數(shù),求被調(diào)查學(xué)生聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)的平均數(shù);
聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)x | 組中值 |
1≤x<11 | 6 |
11≤x<21 | 16 |
21≤x<31 | 26 |
31≤x<41 | 36 |
(4)該校共有1350名學(xué)生,如果聽(tīng)寫(xiě)正確的漢字個(gè)數(shù)不少于21個(gè)定為良好,請(qǐng)你估計(jì)該校本次“漢字聽(tīng)寫(xiě)”比賽達(dá)到良好的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在學(xué)校開(kāi)展的數(shù)學(xué)活動(dòng)課上,小明和小剛制作了一個(gè)正三樓錐(質(zhì)量均勻,四個(gè)面完全相同),并在各個(gè)面上分別標(biāo)記數(shù)字1,2,3,4,游戲規(guī)則如下每人投擲三棱錐兩次,并記錄底面的數(shù)字,如果兩次所擲數(shù)字的和為單數(shù),那么算小明贏,如果兩歡所擲數(shù)字的和為偶數(shù),那么算小明贏;
(1)請(qǐng)用列表或者面樹(shù)狀圍的方法表示上述游戲中的所有可能結(jié)果.
(2)請(qǐng)分別隸出小明和小剛能贏的概率,并判新游戲的公平性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ACB中,∠ACB=90°,AC=BC,點(diǎn)C的坐標(biāo)為(﹣2,0),點(diǎn)A的坐標(biāo)為(﹣6,3),求點(diǎn)B的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com