已知拋物線(xiàn)y=ax2+bx+c經(jīng)過(guò)A,B,C三點(diǎn),當(dāng)x≥0時(shí),其圖象如圖所示.
(1)求拋物線(xiàn)的解析式,寫(xiě)出拋物線(xiàn)的頂點(diǎn)坐標(biāo);
(2)畫(huà)出拋物線(xiàn)y=ax2+bx+c當(dāng)x<0時(shí)的圖象;
(3)利用拋物線(xiàn)y=ax2+bx+c,寫(xiě)出x為何值時(shí),y>0.
(1)由圖象,可知A(0,2),B(4,0),C(5,-3),
得方程組
2=c
0=16a+4b+c
-3=25a+5b+c

解得a=-
1
2
,b=
3
2
,c=2.
∴拋物線(xiàn)的解析式為y=-
1
2
x2+
3
2
x+2.
頂點(diǎn)坐標(biāo)為(
3
2
,
25
8
).

(2)所畫(huà)圖如圖.

(3)由圖象可知,當(dāng)-1<x<4時(shí),y>0.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線(xiàn)的頂點(diǎn)為(3,3),且點(diǎn)(2,-2)在拋物線(xiàn)上,求拋物線(xiàn)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(1,
3
),點(diǎn)B的坐標(biāo)(-2,0),點(diǎn)O為原點(diǎn).
(1)求過(guò)點(diǎn)A,O,B的拋物線(xiàn)解析式;
(2)在x軸上找一點(diǎn)C,使△ABC為直角三角形,請(qǐng)直接寫(xiě)出滿(mǎn)足條件的點(diǎn)C的坐標(biāo);
(3)將原點(diǎn)O繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)120°后得點(diǎn)O′,判斷點(diǎn)O′是否在拋物線(xiàn)上,請(qǐng)說(shuō)明理由;
(4)在x軸下方的拋物線(xiàn)上是否存在一點(diǎn)P,過(guò)點(diǎn)P作x軸的垂線(xiàn),交直線(xiàn)AB于點(diǎn)E,線(xiàn)段OE把△AOB分成兩個(gè)三角形,使其中一個(gè)三角形面積與四邊形BPOE面積比為2:3,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(2口口少•荊門(mén))9開(kāi)4向上4拋物線(xiàn)與x軸交于g(m-2,口),B(m+2,口)兩點(diǎn),記拋物線(xiàn)頂點(diǎn)為C,且gC⊥BC.
(你)若m為常數(shù),求拋物線(xiàn)4解析式;
(2)若m為小于口4常數(shù),那么(你)中4拋物線(xiàn)經(jīng)過(guò)怎么樣4平移可以使頂點(diǎn)在坐標(biāo)原點(diǎn);
(右)設(shè)拋物線(xiàn)交三軸正半軸于下點(diǎn),問(wèn)是否存在實(shí)數(shù)m,使得△BO下為等腰三角形?若存在,求出m4值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在第一象限內(nèi),以
5
為半徑的圓⊙M經(jīng)過(guò)點(diǎn)A(-1,0),B(3,0),與y軸相交于點(diǎn)C.
(1)在所給的坐標(biāo)系中作出⊙M,并求M點(diǎn)的坐標(biāo);
(2)求經(jīng)過(guò)A、B、C三點(diǎn)的拋物線(xiàn)的解析式;
(3)若D為⊙M上的最低點(diǎn),E為x軸上的任一點(diǎn),則在拋物線(xiàn)上是否存在這樣的點(diǎn)F,使得以點(diǎn)A、D、E、F為頂點(diǎn)的四邊形是平行四邊形?若存在,求出點(diǎn)F的坐標(biāo);若不存在,說(shuō)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某灌溉設(shè)備的噴頭B高出地面1.25m,噴出的拋物線(xiàn)形水流在與噴頭底部A的距離為1m處達(dá)到距地面最大高度2.25m.試在恰當(dāng)?shù)闹苯亲鴺?biāo)系中求出與該拋物線(xiàn)水流對(duì)應(yīng)的二次函數(shù)關(guān)系式.
小明在解答下圖所示的問(wèn)題時(shí),寫(xiě)下了如下解答過(guò)程:

①以水流的最高點(diǎn)為原點(diǎn),過(guò)原點(diǎn)的水平線(xiàn)為橫軸,過(guò)原點(diǎn)的鉛垂線(xiàn)為縱軸建立如圖所示的平面直角坐標(biāo)系;
②設(shè)拋物線(xiàn)的解析式為y=ax2;
③則B點(diǎn)的坐標(biāo)為(-1,-1);
④代入y=ax2,得-1=a•1,所以a=-1
⑤所以y=-x2
問(wèn):(1)小明的解答過(guò)程是否正確,若不正確,請(qǐng)你加以改正;
(2)噴出的水流能否澆灌到地面上距離A點(diǎn)3.5m的莊稼上(圖上莊稼在A點(diǎn)的右側(cè),莊稼的高度不計(jì)),若不能請(qǐng)你在上圖所示的坐標(biāo)系中將噴頭B上下或左右平移,問(wèn)至少要平移多少距離才能澆灌到地面的莊稼,并求出此時(shí)噴出的拋物線(xiàn)形水流的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線(xiàn)y=-
2
3
x2+bx+c經(jīng)過(guò)A(0,-4)、B(x1,0)、C(x2,0)三點(diǎn),且x2-x1=5.
(1)求b、c的值;
(2)在拋物線(xiàn)上求一點(diǎn)D,使得四邊形BDCE是以BC為對(duì)角線(xiàn)的菱形;
(3)在拋物線(xiàn)上是否存在一點(diǎn)P,使得四邊形BPOH是以O(shè)B為對(duì)角線(xiàn)的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,一條拋物線(xiàn)與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其頂點(diǎn)P在線(xiàn)段MN上移動(dòng).若點(diǎn)M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點(diǎn)B的橫坐標(biāo)的最大值為3,則點(diǎn)A的橫坐標(biāo)的最小值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知等邊三角形的邊長(zhǎng)為x(cm),則此三角形的面積S(cm2)關(guān)于x的函數(shù)關(guān)系式是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案