如圖,?ABCD中,E、F是對角線BD上的點,且BE=DF,連結AE、CF,猜想AE、CF的關系,并驗證說明理由.

解:猜想:AE=CF.
證明:∵四邊形ABCD是平行四邊形,
∴AB∥CD,AB=CD,
∴∠ABE=∠CDF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(SAS),
∴AE=CF.
分析:由四邊形ABCD是平行四邊形,即可得AB∥CD,AB=CD,然后利用平行線的性質,求得∠ABE=∠CDF,又由BE=DF,即可證得△ABE≌△CDF,繼而可得AE=CF.
點評:此題考查了平行四邊形的性質與全等三角形的判定與性質.此題比較簡單,注意掌握平行四邊形的對邊平行且相等,注意數(shù)形結合思想的應用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

9、如圖,?ABCD中,O為AC、BD的中點,則圖中全等的三角形共有( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,AB⊥AC,AB=1,BC=
5
,對角線AC,BD相交于O點,將直線AC繞點O順時針旋轉,分別交BC,AD于點E,F(xiàn),下列說法不正確的是(  )
A、當旋轉角為90°時,四邊形ABEF一定為平行四邊形
B、在旋轉的過程中,線段AF與EC總相等
C、當旋轉角為45°時,四邊形BEDF一定為菱形
D、當旋轉角為45°時,四邊形ABEF一定為等腰梯形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,?ABCD中,E是CD的延長線上一點,BE與AD交于點F,DE=
12
DC.  若△DEF的面積為2,則?ABCD的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)已知:如圖,?ABCD中,點E是AD的中點,延長CE交BA的延長線于點F.
求證:AB=AF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(1997•浙江)如圖,?ABCD中,對角線AC和BD交于點O,過O作OE∥BC交DC于點E,若OE=5cm,則AD的長為
10
10
cm.

查看答案和解析>>

同步練習冊答案