【題目】中,是角平分線,

1)如圖1是高,,,則 (直接寫出結(jié)論,不需寫解題過程);

2)如圖2,點上,,試探究之間的數(shù)量關(guān)系,寫出你的探究結(jié)論并證明;

3)如圖3,點的延長線上,,則、之間的數(shù)量關(guān)系是  (直接寫出結(jié)論,不需證明).

【答案】(1) 11;(2) ∠DEF=(C-B),證明見解析;(3)DEF=(C-B) ,證明見解析

【解析】

(1)依據(jù)角平分線的定義以及垂線的定義,即可得到∠CAD=BAC,∠CAE=90°-C,進(jìn)而得出∠DAE=(C-B),由此即可解決問題.
(2)AAGBCG,依據(jù)平行線的性質(zhì)可得∠DAG=DEF,依據(jù)(1)中結(jié)論即可得到∠DEF=(C-B)
(3)AAGBCG,依據(jù)平行線的性質(zhì)可得∠DAG=DEF,依據(jù)(1)中結(jié)論即可得到∠DEF=(C-B)不變.

(1)AD平分∠BAC
∴∠CAD=BAC,
AEBC,
∴∠CAE=90°-C,
∴∠DAE=CAD-CAE
=BAC-(90°-C)
=(180°-B-C)-(90°-C)
=C-B
=(C-B)
∵∠B=52°,∠C=74°,
∴∠DAE=(74°-52°)=11°;
(2)結(jié)論:∠DEF=(C-B)
理由:如圖2,過AAGBCG,

EFBC
AGEF,
∴∠DAG=DEF
(1)可得,∠DAG=(C-B)
∴∠DEF=(C-B);
(3)仍成立.
如圖3,過AAGBCG,

EFBC,
AGEF,
∴∠DAG=DEF
(1)可得,∠DAG=(C-B),
∴∠DEF=(C-B)
故答案為∠DEF=(C-B)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知中,,,、的邊上的兩個動點,其中點從點開始沿方向運動,且速度為每秒,點從點開始沿方向運動,且速度為每秒,它們同時出發(fā),設(shè)出發(fā)的時間為

1)則____________;

2)當(dāng)為何值時,點在邊的垂直平分線上?此時_________?

3)當(dāng)點在邊上運動時,直接寫出使成為等腰三角形的運動時間

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,AB=ACBAC=),將線段BC繞點B逆時針旋轉(zhuǎn)60°得到線段BD

1)如圖1,直接寫出ABD的大小(用含的式子表示);

2)如圖2,BCE=150°ABE=60°,判斷ABE的形狀并加以證明;

3)在(2)的條件下,連結(jié)DE,若DEC=45°,求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工廠接到訂單生產(chǎn)如圖所示的巧克力包裝盒子,每個盒子由3個長方形側(cè)面和2個正三角形底面組成,倉庫有甲、乙兩種規(guī)格的紙板共2600張,其中甲種規(guī)格的紙板剛好可以裁出4個側(cè)面(如圖),乙種規(guī)格的紙板可以裁出3個底面和2個側(cè)面(如圖),裁剪后邊角料(圖中陰影部分)不再利用.

1)若裁剪出的側(cè)面和底面恰好全部用完,問兩種規(guī)格的紙板各有多少張?

2)一共能生產(chǎn)多少個巧克力包裝盒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:對于給定的二次函數(shù)y=a(x﹣h)2+k(a0),其伴生一次函數(shù)為y=a(x﹣h)+k,例如:二次函數(shù)y=2(x+1)2﹣3的伴生一次函數(shù)為y=2(x+1)﹣3,即y=2x﹣1.

(1)已知二次函數(shù)y=(x﹣1)2﹣4,則其伴生一次函數(shù)的表達(dá)式為_____

(2)試說明二次函數(shù)y=(x﹣1)2﹣4的頂點在其伴生一次函數(shù)的圖象上;

(3)如圖,二次函數(shù)y=m(x﹣1)2﹣4m(m0)的伴生一次函數(shù)的圖象與x軸、y軸分別交于點B、A,且兩函數(shù)圖象的交點的橫坐標(biāo)分別為12,在∠AOB內(nèi)部的二次函數(shù)y=m(x﹣1)2﹣4m的圖象上有一動點P,過點Px軸的平行線與其伴生一次函數(shù)的圖象交于點Q,設(shè)點P的橫坐標(biāo)為n,直接寫出線段PQ的長為n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把拋物線沿軸向右平移個單位后,再沿軸翻折得到拋物線稱為第一次操作,把拋物線沿軸向右平移個單位后,再沿軸翻折得到拋物線稱為第二次操作,…,以此類推,則拋物線經(jīng)過第此操作后得到的拋物線的解析式為(

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)

求出拋物線的對稱軸和頂點坐標(biāo);

在直角坐標(biāo)系中,直接畫出拋物線(注意:關(guān)鍵點要準(zhǔn)確,不必寫出畫圖象的過程);

根據(jù)圖象回答:

取什么值時,拋物線在軸的上方?

取什么值時,的值隨的值的增大而減?

根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如今通過微信朋友圈發(fā)布自己每天行走的步數(shù)已成為一種時尚.健身達(dá)人小張為了了解他的微信朋友圈里大家的運動情況,隨機抽取了部分好友進(jìn)行調(diào)查,把他們129日那天每人行走的步數(shù)情況分為五個類別:A(0~4000步)(說明:0~4000表示大于或等于0,小于或等于4000,下同)、B(4001~8000步)、C(8001~12000步)、D(12001~16000步)、E(16000步以上),并將統(tǒng)計結(jié)果繪制了如圖12兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中提供的信息解答下列問題:

(1)小張隨機抽取了   名微信朋友圈好友;

(2)將圖1的條形統(tǒng)計圖補充完整;

(3)已知小張的微信朋友圈里共300人,請根據(jù)本次抽查的結(jié)果,估計在它的微信朋友圈里129日那天行走不超過8000步的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(m,6),B(n,1)在反比例函數(shù)的圖象上,ADx軸于點D,BCx軸于點C,點ECD上,CD=5,ABE的面積為10,則點E的坐標(biāo)是_____________

查看答案和解析>>

同步練習(xí)冊答案