【題目】如圖,正方形ABCD的對角線相交于點O,點O是正方形A′B′C′O的一個頂點.如果兩個正方形的邊長都等于2,那么正方形A′B′C′OA繞O點無論怎樣轉(zhuǎn)動,兩個正方形重疊的部分的面積是 .
【答案】1
【解析】解:如圖,連接AC,BD,正方形ABCD的對角線相交于點O,∴∠ODE=∠OAF=45°,OA=OD,∠AOD=90°,
∵∠EOF=∠DOE+∠DOF=90°,∠AOD=∠DOF+∠AOF=90°,
∴∠DOE=∠AOF,
在△DOE和△AOF中,
,
∴△DOE≌△AOF(ASA),
∴S△AOF=S△DOE ,
∴四邊形OEDF的面積=S△DOE+S△DOF=S△AOF+S△DOF=S△AOD ,
∵S△AOD= S正方形ABCD= ×2×2=1,
∴四邊形OEDF的面積為1,即兩個正方形重疊部分的面積為1.
故答案為:1.
根據(jù)正方形性質(zhì)可得∠ODE=∠OAF=45°,OA=OD,∠AOD=90°,即可求得∠DOE=∠AOF,即可判定△DOE≌△AOF,可得S△AOF=S△DOE , 即可求得兩個正方形重疊部分的面積=S△AOD .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,過點C作⊙O的切線,交BA的延長線交于點D,過點B作BE⊥BA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC。
(1)求證:∠ECB=∠EBC;
(2)連接BF,CF,若CF=6,sin∠FCB=,求AC的長。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式請你觀察下列幾種簡單多面體模型,解答下列問題:
(1)根據(jù)上面多面體的模型,完成表格中的空格:
多面體 | 頂點數(shù)(V) | 面數(shù)(F) | 棱數(shù)(E) |
四面體 | 4 | 4 | |
長方體 | 8 | 12 | |
正八面體 | 8 | 12 | |
正十二面體 | 20 | 12 | 30 |
(2)你發(fā)現(xiàn)頂點數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的關(guān)系式是E=________;
(3)一個多面體的面數(shù)比頂點數(shù)大8,棱數(shù)為30,則這個多面體的面數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖a、圖b是兩張形狀、大小完全相同的方格紙,方格紙中每個小正方形的邊長為1,點A、B、D在小正方形的頂點上.
(1)在圖a中畫出△ABC(點C在小正方形頂點上),使△ABC是等腰三角形,且∠ABC=45°;
(2)在圖b中畫出△DEF(E、F在小正方形頂點上),使△DEF∽ABC且相似比為1: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中選擇一些橫、縱坐標(biāo)滿足下面條件的點,標(biāo)出它們的位置看看它們在第幾象限或哪條坐標(biāo)軸上:
(1)點P(x,y)的坐標(biāo)滿足xy>0;
(2)點P(x,y)的坐標(biāo)滿足xy<0;
(3)點P(x,y)的坐標(biāo)滿足xy=0.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法中不正確的是( )
A. 兩組對邊分別平行的四邊形是平行四邊形
B. 對角線互相垂直的平行四邊形是菱形
C. 有一個角是直角的平行四邊形是矩形
D. 兩條對角線互相垂直且相等的四邊形是正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某茶葉廠用甲,乙,丙三臺包裝機分裝質(zhì)量為200g的茶葉,從它們各自分裝的茶葉中分別隨機抽取了20盒,得到它們的實際質(zhì)量的方差如下表所示:
甲包裝機 | 乙包裝機 | 丙包裝機 | |
方差 | 10.96 | 5.96 | 12.32 |
根據(jù)表中數(shù)據(jù),可以認(rèn)為三臺包裝機中,包裝茶葉的質(zhì)量最穩(wěn)定是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知M=9x2-4x+3,N=5x2+4x-2,則M與N的大小關(guān)系是( )
A. M>N B. M=N C. M<N D. 不能確定
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com