已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,則Rt△ABC的面積是( )
A.24cm2
B.36cm2
C.48cm2
D.60cm2
【答案】分析:要求Rt△ABC的面積,只需求出兩條直角邊的乘積.根據(jù)勾股定理,得a2+b2=c2=100.根據(jù)勾股定理就可以求出ab的值,進(jìn)而得到三角形的面積.
解答:解:∵a+b=14
∴(a+b)2=196
∴2ab=196-(a2+b2)=96
ab=24.
故選A.
點(diǎn)評(píng):這里不要去分別求a,b的值,熟練運(yùn)用完全平方公式的變形和勾股定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知Rt△ABC中,∠ACB=90°,AC=4,BC=3,以AB邊所在的直線為軸,將△ABC旋轉(zhuǎn)一周,則所得幾何體的表面積是( 。
A、
168
5
π
B、24π
C、
84
5
π
D、12π

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、如圖所示,已知Rt△ABC中,AB=AC,BD平分∠ABC,CE⊥BD交BD延長(zhǎng)線于E,BA、CE延長(zhǎng)線相交于F點(diǎn).
求證:(1)△BCF是等腰三角形;(2)BD=2CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

25、已知Rt△ABC中,∠ACB=90°,AB=5,兩直角邊AC、BC的長(zhǎng)是關(guān)于x的方程x2-(m+5)x+6m=0的兩個(gè)實(shí)數(shù)根.求m的值及AC、BC的長(zhǎng)(BC>AC).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

10、如圖,已知Rt△ABC中,∠C=90°∠A=36°,以C為圓心,CB為半徑的圓交AB于P,則弧BP的度數(shù)是
72
°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知Rt△ABC中,∠ACB=90°,CA=CB,點(diǎn)D在BC的延長(zhǎng)線上,點(diǎn)E在AC上,且CD=CE,延長(zhǎng)BE交AD于點(diǎn)F,求證:BF⊥AD.

查看答案和解析>>

同步練習(xí)冊(cè)答案