【題目】拋物線與軸交于點(diǎn)C(0,3),其對(duì)稱軸與軸交于點(diǎn)A(2,0).
(1)求拋物線的解析式;
(2)將拋物線適當(dāng)平移,使平移后的拋物線的頂點(diǎn)為D(0,).已知點(diǎn)B(2,2),若拋物線與△OAB的邊界總有兩個(gè)公共點(diǎn),請(qǐng)結(jié)合函數(shù)圖象,求的取值范圍.
【答案】(1);(2).
【解析】
(1)由拋物線與軸交于點(diǎn)C(0,3),得到;由拋物線的對(duì)稱軸為,得到的值,從而得到拋物線的解析式;
(2)設(shè)拋物線的解析式為,當(dāng)拋物線經(jīng)過點(diǎn)A(2,0)時(shí),解得,由O(0,0),B(2,2),得到直線OB的解析式為.聯(lián)立得方程,得,當(dāng)Δ==0,即時(shí),拋物線與直線OB只有一個(gè)公共點(diǎn),此時(shí)方程化為,解得,即公共點(diǎn)P的橫坐標(biāo)為1,點(diǎn)P在線段OB上,即可得到的取值范圍是.
解:(1)∵拋物線與軸交于點(diǎn)C(0,3),
∴;
∵拋物線的對(duì)稱軸為,
∴,解得,
∴拋物線的解析式為;
(2)由題意,拋物線的解析式為,當(dāng)拋物線經(jīng)過點(diǎn)A(2,0)時(shí),,解得,
∵O(0,0),B(2,2),
∴直線OB的解析式為.由,得,
當(dāng)Δ==0,即時(shí),拋物線與直線OB只有一個(gè)公共點(diǎn),此時(shí)方程化為,解得,即公共點(diǎn)P的橫坐標(biāo)為1,點(diǎn)P在線段OB上,
∴的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖,對(duì)稱軸是直線x=﹣1,有以下結(jié)論:①abc>0;②4ac<b2;③2a﹣b=0;④a﹣b+c>0;⑤9a﹣3b+c>0.其中正確的結(jié)論有_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A1、A3、A5…在反比例函數(shù)y=(x>0)的圖象上,點(diǎn)A2、A4、A6……在反比例函數(shù)y=-(x>0)的圖象上,∠OA1A2=∠A1A2A3=∠A2A3A4=…=∠α=60°,且OA1=2,則An(n為正整數(shù))的縱坐標(biāo)為________________________________.(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E是矩形ABCD的邊CD上一點(diǎn),把△ADE沿AE對(duì)折,使點(diǎn)D恰好落在BC邊上的F點(diǎn)處.已知折痕AE=10,且CE:CF=4:3,那么該矩形的周長(zhǎng)為( )
A.48B.64C.92D.96
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,CG⊥AB于點(diǎn)G,∠ABF=45°,F在CD上,BF交CG于點(diǎn)E,連接AE,且AE⊥AD.
(1)若BG=2,BC=,求EF的長(zhǎng)度;
(2)求證:CE+BE=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系 xOy 中,直線 l:與 x 軸交于點(diǎn) A(-2,0),與 y 軸交于點(diǎn) B.雙曲線與直線 l 交于 P,Q 兩點(diǎn),其中點(diǎn) P 的縱坐標(biāo)大于點(diǎn) Q 的縱坐標(biāo).
(1)求點(diǎn) B 的坐標(biāo);
(2)當(dāng)點(diǎn) P 的橫坐標(biāo)為 2 時(shí),求 k 的值;
(3)連接 PO,記△POB 的面積為 S,若 ,直接寫出 k 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC=BC,點(diǎn)G為AC中點(diǎn),連結(jié)BG,CE⊥BG于F,交AB于E,連接GE,點(diǎn)H為AB中點(diǎn),連接FH.以下結(jié)論:(1)∠ACE=∠ABG;(2)∠AGE=∠CGB:(3)若AB=10,則BF=4;(4)FH平分∠BFE;(5)S△BGC=3S△CGE.其中正確結(jié)論的個(gè)數(shù)是( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x+4與x軸、y軸分別交于點(diǎn)A和點(diǎn)B,點(diǎn)C,D分別為線段AB,OB的中點(diǎn),點(diǎn)P為OA上一動(dòng)點(diǎn),PC+PD值最小時(shí)點(diǎn)P的坐標(biāo)為.
A. (-3,0) B. (-6,0) C. (-,0) D. (-,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某小學(xué)為每個(gè)班級(jí)配備了一種可以加熱的飲水機(jī),該飲水機(jī)的工作程序是:放滿水后,接通電源,則自動(dòng)開始加熱,每分鐘水溫上升10℃,待加熱到100℃,飲水機(jī)自動(dòng)停止加熱,水溫開始下降,水溫y(℃)與通電時(shí)間x(min)成反比例關(guān)系,直至水溫降至室溫,飲水機(jī)再次自動(dòng)加熱,重復(fù)上述過程.設(shè)某天水溫和室溫為20℃,接通電源后,水溫y(℃)與通電時(shí)間x(min)的關(guān)系如下圖所示,回答下列問題:
(1)當(dāng)0≤x≤8時(shí),求y與x之間的函數(shù)關(guān)系式;
(2)求出圖中a的值;
(3)某天早上7:20,李老師將放滿水后的飲水機(jī)電源打開,若他想在8:00上課前能喝到不超過40℃的溫開水,問:他應(yīng)在什么時(shí)間段內(nèi)接水?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com