【題目】如圖1,在平面直角坐標系中,將ABCD放置在第一象限,且AB∥x軸.直線y=-x從原點出發(fā)沿x軸正方向平移,在平移過程中直線被平行四邊形截得的線段長度l與直線在x軸上平移的距離m的函數(shù)圖象如圖2所示,那么AD的長為 .
【答案】.
【解析】
試題解析:①先經(jīng)過點D,即AB>3,如圖1:
設(shè)直線過點A時交x軸于點E,過點D交AB于點G,交x軸于點F,作DH⊥AB,
由圖可知:OE=4,OF=7,DG=2,
∴EF=AG=OF-OE=3
∵直線y=-x
∴∠AGD=∠EFD=45°
∴△HGD是等腰直角三角形
∴DH=GH=DG=×2=2
∴AH=AG-GH=3-2=1
∴AD=
②先經(jīng)過點B,即AB=3,如圖2:
設(shè)直線過點A時交x軸于點I,過點B時交AD于點K、x軸于點J,過點D時,交AB延長線于點N、x軸于點M,并過K點作KL⊥AB,
由圖可知:OI=4,OJ=7,KB=2,OM=8,
∴IJ=AB=3,IM=AN=4,
由直線y=-x,易得△KLB是等腰直角三角形,
∴KL=BL=KB=×2=2,
∴AL=1,
∴AK=,
∵△ABK∽△AND,
∴,
即,
即AD=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在﹣1,0,1,2這四個數(shù)中,既不是正數(shù)也不是負數(shù)的是( ).
A.﹣1 B.0 C.1 D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司要把240噸白砂糖運往某市的、兩地,用大、小兩種貨車共20輛,恰好能一次性裝完這批白砂糖.已知這兩種貨車的載重量分別為15噸/輛和10噸/輛,運往地的運費為:大車630元/輛,小車420元/輛;運往地的運費為:大車750元/輛,小車550元/輛.
(1)求兩種貨車各用多少輛;
(2)如果安排10輛貨車前往地,其中調(diào)往地的大車有輛,其余貨車前往地,若設(shè)總運費為,求W與的關(guān)系式(用含有的代數(shù)式表示W(wǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在上完數(shù)學(xué)課后,王磊發(fā)現(xiàn)操場上的旗桿與旁邊一棵大樹的影子好像平行,但他不敢肯定,此時他最好的辦法是( 。
A. 找來三角板、直尺,通過平移三角板來驗證影子是否平行
B. 相信自己,兩個影子就是平行的
C. 構(gòu)造幾何模型,用已學(xué)過的知識證明
D. 作一直線截兩影子,并用量角器測出同位角的度數(shù),若相等則影子平行
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一元二次方程x2﹣x﹣1=0的根的情況為( )
A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根
C.只有一個實數(shù)根 D.沒有實數(shù)根
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,菱形ABCD中,CH⊥AB,垂足為H,交對角線AC于M,連接BM,且AH=3.
(1)求DM的長;
(2)如圖2,動點P從點A出發(fā),沿折線ABC方向以2個單位/秒的速度向終點C勻速運動,設(shè)△PMB的面積為S(S≠0),點P的運動時間為t秒,求S與t之間的函數(shù)關(guān)系式;
(3)在(2)的條件下,當點P在邊AB上運動時,是否存在這樣的t的值,使∠MPB與∠BCD互為余角?若存在,求出t的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com