矩形ABCD中,AB=4,AD=3,以AB為直徑在矩形內(nèi)作半圓。DE切⊙O于點E(如圖),則tan∠CDF的值為(    ).

A.B.C.D.

B

解析試題分析:根據(jù)切線長定理可得AD=DE=3,BF=EF,設(shè)BF=EF=x,則CF=3-x,在Rt△CDF中,根據(jù)勾股定理即可列方程求得x的值,最后根據(jù)正切函數(shù)的定義求解即可.
由題意得AD=DE=3,BF=EF,AB=CD=4
設(shè)BF=EF=x,則CF=3-x,DF=3+x
在Rt△CDF中,
,解得

所以tan∠CDF
故選B.
考點:切線長定理,勾股定理,銳角三角函數(shù)的定義
點評:此類問題知識點較多,綜合性較強,是中考常見題,一般難度不大,題目比較典型.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,已知矩形ABCD中,AB=8,BC=5π.分別以B,D為圓心,AB為半徑畫弧,兩弧分別交對角線BD于點E,F(xiàn),則圖中陰影部分的面積為(  )
A、4πB、5πC、8πD、10π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

矩形ABCD中,AB=3,BC=4,以點A為圓心畫圓,使B,C,D三點中至少有一點在⊙A內(nèi),且至少有一點在⊙A外,則⊙O的半徑r的取值范圍為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•溧水縣一模)如圖,矩形ABCD中,AB=6,BC=3.點E在線段BA上從B點以每秒1個單位的速度出發(fā)向A點運動,F(xiàn)是射線CD上一動點,在點E、F運動的過程中始終保持EF=5,且CF>BE,點P是EF的中點,連接AP.設(shè)點E運動時間為ts.

(1)在點E運動過程中,AP的長度是如何變化的?
D
D

A.一直變短     B.一直變長    C.先變長后變短    D.先變短后變長
(2)在點E、F運動的過程中,AP的長度存在一個最小值,當AP的長度取得最小值時,點P的位置應該在
AD的中點
AD的中點

(3)以P為圓心作⊙P,當⊙P與矩形ABCD三邊所在直線都相切時,求出此時t的值,并指出此時⊙P的半徑長..

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD中,AB=4,AD=5,E是CD上的一點,將△ADE沿AE折疊,點D剛好與BC邊上點F重合,則線段CE的長為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,矩形ABCD中,AB=8,BC=10,沿AF折疊矩形ABCD,使點D剛好落在邊BC上的點E處,則折痕AF的長為
5
5
5
5

查看答案和解析>>

同步練習冊答案