【題目】如圖所示,是一塊銳角三角形余料,邊毫米,高毫米,要把它加工成一個(gè)矩形零件,使矩形的一邊在上,其余兩個(gè)頂點(diǎn)分別在,上,設(shè)該矩形的長(zhǎng)毫米,寬毫米.
(1)求證:;
(2)當(dāng)與分別取什么值時(shí),矩形的面積最大?最大面積是多少?
(3)當(dāng)矩形的面積最大時(shí),它的長(zhǎng)和寬是關(guān)于的一元二次方程的兩個(gè)根,而,的值又恰好分別是,10,12,13,這5個(gè)數(shù)據(jù)的眾數(shù)與平均數(shù),試求與的值.
【答案】(1)詳見解析;(2)當(dāng)毫米,毫米時(shí),矩形面積最大,最大面積為2400平方毫米;(3)a=10,b=15或a=15,b=10.
【解析】
(1)易證△APN∽△ABC,根據(jù)相似三角形對(duì)應(yīng)邊的比等于對(duì)應(yīng)高的比,即可求解;
(2)矩形PQMN的面積S=xy,根據(jù)(1)中y與x的函數(shù)關(guān)系式,即可得到S與x之間的函數(shù)關(guān)系,根據(jù)函數(shù)的性質(zhì)即可求解;
(3)根據(jù)(2)中求得的長(zhǎng)與寬的數(shù)值,利用根與系數(shù)的關(guān)系即可求得p,q的數(shù)值,根據(jù)眾數(shù)與中位數(shù)的定義即可求得a與b的值.
(1)證明:根據(jù)已知條件易知:PN∥BC,AE⊥PN,PN=QM=y,DE=MN=x,
∴,
∴,即,
∴,;
(2)解:設(shè)矩形PQMN的面積為S,則
,,
∴當(dāng)時(shí),有最大值2400,
此時(shí),故當(dāng)毫米,毫米時(shí),矩形面積最大,最大面積為2400平方毫米;
(3)解:由根與系數(shù)的關(guān)系,得,解得,
∵,10,12,13,眾數(shù)為10,
∴或,
當(dāng)時(shí),有,解得 ,
當(dāng)時(shí),同理可得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)C在⊙O上,△ABC的外角平分線BD交⊙O于D,DE∥AC交CB的延長(zhǎng)線于E.
(1)求證:DE是⊙O的切線;
(2)若∠A=30°,BD=3,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦DE垂直平分半徑OA,C為垂足,弦DF與半徑OB相交于點(diǎn)P,連結(jié)EF、EO,若DE=,∠DPA=45°.
(1)求⊙O的半徑;
(2)求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)B、C、D都在上,過點(diǎn)C作交OB延長(zhǎng)線于點(diǎn)A,連接CD,且,.
(1)直線AC與有怎樣的位置關(guān)系?為什么?
(2)求由弦CD、BD與弧BC所圍成的陰影部分的面積(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現(xiàn)有兩個(gè)動(dòng)點(diǎn)P、Q分別從點(diǎn)A和點(diǎn)B同時(shí)出發(fā),其中點(diǎn)P以2cm/s的速度,沿AB向終點(diǎn)B移動(dòng);點(diǎn)Q以1cm/s的速度沿BC向終點(diǎn)C移動(dòng),其中一點(diǎn)到終點(diǎn),另一點(diǎn)也隨之停止.連接PQ.設(shè)動(dòng)點(diǎn)運(yùn)動(dòng)時(shí)間為x秒.
(1)用含x的代數(shù)式表示BQ、PB的長(zhǎng)度;
(2)當(dāng)x為何值時(shí),△PBQ為等腰三角形;
(3)是否存在x的值,使得四邊形APQC的面積等于20cm2?若存在,請(qǐng)求出此時(shí)x的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知菱形的邊長(zhǎng)為2,=60°,對(duì)角線,相交于點(diǎn)O.以點(diǎn)O為坐標(biāo)原點(diǎn),分別以,所在直線為x軸、y軸,建立如圖所示的直角坐標(biāo)系.以為對(duì)角線作菱形∽菱形,再以為對(duì)角線作菱形∽菱形,再以為對(duì)角線作菱形∽菱形,,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點(diǎn),,,......,,則點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是的內(nèi)接正方形,,、是的兩 條切線,、為切點(diǎn).
(1)如圖1,求的半徑;
(2)如圖1,若點(diǎn)是的中點(diǎn),連結(jié),求的長(zhǎng)度;
(3)如圖2,若點(diǎn)是邊上任意一點(diǎn)(不含、),以點(diǎn)為直角頂點(diǎn),在的上方作,交直線于點(diǎn),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=x2+bx+c與x軸交于A(﹣1,0),B(3,0)兩點(diǎn).
(1)求該拋物線的解析式.
(2)一動(dòng)點(diǎn)P在(1)中拋物線上滑動(dòng)且滿足S△ABP=10,求此時(shí)P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商城某種商品平均每天可銷售20件,每件盈利30元,為慶元旦,決定進(jìn)行促銷活動(dòng),經(jīng)調(diào)查發(fā)現(xiàn),每件商品每降價(jià)1元,商場(chǎng)平均每天可多售出2件.設(shè)該商品每件降價(jià)元,請(qǐng)解答下列問題
(1)用含的代數(shù)式表示:
①降價(jià)后每售一件盈利 元;
②降價(jià)后平均每天售出 件;
(2)在此次促銷活動(dòng)中,商城若要獲得最大盈利,每件商品應(yīng)降價(jià)多少元?獲得最大盈利多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com