【題目】如圖所示,BC是圓O的直徑,點(diǎn)A,F(xiàn)在圓O上,連接AB,BF.

(1)如圖1,若點(diǎn)A、F把半圓三等分,連接OA,OA與BF交于點(diǎn)E.求證:E為OA的中點(diǎn);
(2)如圖2,若點(diǎn)A為弧 的中點(diǎn),過(guò)點(diǎn)A作AD⊥BC,垂足為點(diǎn)D,AD與BF交于點(diǎn)G.求證:AG=BG.

【答案】
(1)證明:∵A、F為半圓三等分點(diǎn),

∴∠AOB= ×180°=60°,

∵OA=OB,

∴△OAB為等邊三角形.

∵A為弧BF中點(diǎn),

∴OA⊥BF,

∴BE平分OA,

∴E為OA中點(diǎn)


(2)證明:連接AF,AC,

∵A為弧BF中點(diǎn),

= ,

∴∠ABF=∠F.

=

∴∠C=∠F,

∴∠C=∠ABF.

∵BC為圓O的直徑,

∴∠BAC=90°,

∴∠BAD+∠CAD=90°.

∵AD⊥BC,

∴∠C+∠CAD=90°,

∴∠ABG=∠BAG,

∴AG=BG.


【解析】(1)先求出∠AOB的度數(shù),故可判斷出△OAB為等邊三角形,再由A為弧BF中點(diǎn)可得出OA⊥BF,進(jìn)而可得出結(jié)論;(2)連接AF,AC,根據(jù)弧相等可得出∠C=∠ABF,由圓周角定理可得出∠BAC=90°,再由直角三角形的性質(zhì)得出∠ABG=∠BAG,進(jìn)而可得出結(jié)論.
【考點(diǎn)精析】通過(guò)靈活運(yùn)用圓心角、弧、弦的關(guān)系和圓周角定理,掌握在同圓或等圓中,相等的圓心角所對(duì)的弧相等,所對(duì)的弦也相等;在同圓或等圓中,同弧等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半;頂點(diǎn)在圓心上的角叫做圓心角;頂點(diǎn)在圓周上,且它的兩邊分別與圓有另一個(gè)交點(diǎn)的角叫做圓周角;一條弧所對(duì)的圓周角等于它所對(duì)的圓心角的一半即可以解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解答題.

某校學(xué)生積極為地震災(zāi)區(qū)捐款奉獻(xiàn)愛(ài)心.小穎隨機(jī)抽查其中30名學(xué)生的捐款情況如下:(單位:元)2、5、35、8、5、10、15、20、15、5、45、10、2、8、20、30、40、10、15、15、30、15、8、25、25、30、15、8、10、50.

(1)這30名學(xué)生捐款的最大值、最小值、極差、平均數(shù)各是多少?

(2)將30名學(xué)生捐款額分成下面5組,請(qǐng)你完成頻數(shù)統(tǒng)計(jì)表:

(3)根據(jù)上表,作出頻數(shù)分布直方圖.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知在平面直角坐標(biāo)系中有三點(diǎn)A(﹣2,1)、B(3,1)、C(2,3).請(qǐng)回答如下問(wèn)題:

(1)在坐標(biāo)系內(nèi)描出點(diǎn)A、B、C的位置,并求△ABC的面積;

(2)在平面直角坐標(biāo)系中畫(huà)出△A′B′C′,使它與△ABC關(guān)于x軸對(duì)稱(chēng),并寫(xiě)出△A′B′C′三頂點(diǎn)的坐標(biāo);

(3)若M(x,y)是△ABC內(nèi)部任意一點(diǎn),請(qǐng)直接寫(xiě)出這點(diǎn)在△A′B′C′內(nèi)部的對(duì)應(yīng)點(diǎn)M′的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,,的平分線(xiàn)與BC的延長(zhǎng)線(xiàn)交于點(diǎn)E,與DC交于點(diǎn)F,且點(diǎn)F為邊DC的中點(diǎn),,垂足為G,若,則AE的邊長(zhǎng)為  

A. B. C. 4 D. 8

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某同學(xué)做一道數(shù)學(xué)題,已知兩個(gè)多項(xiàng)式A、B,B=3x2y-5xyx+7,試求AB這位同學(xué)把AB看成AB,結(jié)果求出的答案為6x2y+12xy-2x-9.

(1)請(qǐng)你替這位同學(xué)求出的正確答案

(2)當(dāng)x取任意數(shù)值,A-3B的值是一個(gè)定值,y的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)軸上兩點(diǎn)A、B所表示的數(shù)分別為a和b,且滿(mǎn)足|a+3|+(b-9)2018=0,O為原點(diǎn)

(1) 試求a和b的值

(2) 點(diǎn)C從O點(diǎn)出發(fā)向右運(yùn)動(dòng),經(jīng)過(guò)3秒后點(diǎn)C到A點(diǎn)的距離是點(diǎn)C到B點(diǎn)距離的3倍,求點(diǎn)C的運(yùn)動(dòng)速度?

(3) 點(diǎn)D以1個(gè)單位每秒的速度從點(diǎn)O向右運(yùn)動(dòng),同時(shí)點(diǎn)P從點(diǎn)A出發(fā)以5個(gè)單位每秒的速度向左運(yùn)動(dòng),點(diǎn)Q從點(diǎn)B出發(fā),以20個(gè)單位每秒的速度向右運(yùn)動(dòng).在運(yùn)動(dòng)過(guò)程中,M、N分別為PD、OQ的中點(diǎn),問(wèn)的值是否發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一名工人一天可以加工個(gè)零件,或者加工個(gè)零件,每一個(gè)零件和兩個(gè)零件可以組裝成一套零件,某車(chē)間共有名工人,問(wèn)應(yīng)如何安排這些工人,使加工出來(lái)的零件剛好可以配套.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB是半徑為1的圓O直徑,C是圓上一點(diǎn),D是BC延長(zhǎng)線(xiàn)上一點(diǎn),過(guò)點(diǎn)D的直線(xiàn)交AC于E點(diǎn),且△AEF為等邊三角形

(1)求證:△DFB是等腰三角形;
(2)若DA= AF,求證:CF⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知一次函數(shù)y=﹣x+6的圖象與坐標(biāo)軸交于A、B兩點(diǎn),AE平分∠BAO,交x軸于點(diǎn)E.

(1)求點(diǎn)B的坐標(biāo)及直線(xiàn)AE的表達(dá)式;

(2)過(guò)點(diǎn)BBFAE,垂足為F,在y軸上有一點(diǎn)P,使線(xiàn)段PE+PF的值最小,求點(diǎn)P的坐標(biāo);

(3)若將已知條件“AE平分∠BAO,交x軸于點(diǎn)E”改變?yōu)?/span>點(diǎn)E是線(xiàn)段OB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)E不與點(diǎn)O、B重合),過(guò)點(diǎn)BBFAE,垂足為F,以EF為邊作正方形EFMN,當(dāng)點(diǎn)M落在坐標(biāo)軸上時(shí),求E點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案