【題目】已知,中,,,點邊中點,連接,點的中點,線段繞點順時針旋轉(zhuǎn)得到線段,連接,

1)如圖1,當時,請直接寫出的值;

2)如圖2,當時,(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請寫出正確的結論,并說明理由;

3)如圖3,當時,請直接寫出的值(用含的三角函數(shù)表示)

【答案】1;(2)不成立,,理由見解析;(3

【解析】

1)如圖1(見解析),先根據(jù)中位線定理得出,再根據(jù)旋轉(zhuǎn)的性質(zhì)、等邊三角形的性質(zhì)得出,,,然后根據(jù)三角形全等的判定定理與性質(zhì)可得,由此即可得出答案;

2)如圖2(見解析),先根據(jù)中位線定理、等腰三角形的三線合一得出,再根據(jù)等腰直角三角形的性質(zhì)得出,,然后根據(jù)相似三角形的判定與性質(zhì)可得,從而可得,最后根據(jù)相似三角形的判定與性質(zhì)可得,據(jù)此利用正弦三角函數(shù)值即可得;

3)如圖3(見解析),參照題(2)的思路,先根據(jù)相似三角形的判定與性質(zhì)得出,再在中,利用正弦三角函數(shù)值即可得.

1)如圖1,取AC的中點G,連接EG,則

的中點

的中位線

,即

由旋轉(zhuǎn)的性質(zhì)可知,,

是等邊三角形

,

是等邊三角形

邊中點

,

中,

;

2)不成立,,理由如下:

如圖2,連接,取的中點,連接

的中點

是等腰三角形

中點,

,

時,則

為等腰直角三角形

,即

,

,

中,,即

3,求解過程如下:

如圖3,連接,取的中點,連接

參照(2),同理可得:,,

時,則

(旋轉(zhuǎn)的性質(zhì))

為等腰三角形

,

中,

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】春節(jié)前夕,某批發(fā)部從廠家購進AB兩種禮盒,已知購進2A禮盒和3B禮盒共花520元;購進3A禮盒和2B禮盒共花費480元.

1)求A、B兩種禮盒的單價分別是多少元?

2)該批發(fā)部經(jīng)理購進這兩種禮盒恰好用去4800元購進A種禮盒最多18個,B種禮盒的數(shù)量不超過A種禮盒數(shù)量的2倍,共有幾種進貨方案?

3)已知銷售一個A種禮盒可獲利10元,銷售一個B種禮盒可獲利18元,該店主決定每售出一個B種禮盒,為愛心公益基金捐款m元,每個A種禮盒的利潤不變,在(2)的條件下,要使AB兩種禮盒全部售出后所有方案獲利均相同,m的值應是多少?此時這個批發(fā)部獲利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】ABC中,若OBC邊的中點,則必有:AB2+AC2=2AO2+2BO2成立.依據(jù)以上結論,解決如下問題:如圖,在矩形DEFG中,已知DE=4,EF=3,點P在以DE為直徑的半圓上運動,則PF2+PG2的最小值為( 。

A. B. C. 34 D. 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平行四邊形中,,以B為頂點,作延長線于點E.

1)求證:四邊形是矩形;

2)若,,點P從點E出發(fā),沿方向,以每秒1個單位的速度向終點B運動;點Q從點D出發(fā),沿方向,以每秒2個單位的速度向終點A運動,兩點同時出發(fā),其中一點到達終點后,另一點隨之停止運動.設運動時間為.

①若是等腰三角形,求t的值;

②若,直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在平面直角坐標系中,直線yx+4與拋物線y=﹣x2+bx+cb,c是常數(shù))交于A、B兩點,點Ax軸上,點By軸上.設拋物線與x軸的另一個交點為點C

1)求該拋物線的解析式;

2P是拋物線上一動點(不與點A、B重合),

①如圖2,若點P在直線AB上方,連接OPAB于點D,求的最大值;

②如圖3,若點Px軸的上方,連接PC,以PC為邊作正方形CPEF,隨著點P的運動,正方形的大小、位置也隨之改變.當頂點EF恰好落在y軸上,直接寫出對應的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】能夠成為直角三角形三邊長的三個正整數(shù)稱為勾股數(shù),世界上第一次給出勾股數(shù)公式的是我國古代數(shù)學著作《九章算術》,共勾股數(shù)的公式為:,其中是互質(zhì)的奇數(shù).

1)當時,求這個三角形的面積;

2)當時,計算三角形的周長(用含的代數(shù)式表示),并直接寫出符合條件的三角形的周長值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=3,BC=4,將矩形ABCD沿對角線BD折疊點C落在點E的位置,則AE的長度為(  )

A.B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某小學三年級到六年級的全體學生參加禮儀知識測試,現(xiàn)將有關數(shù)據(jù)整理后繪制成如下年級人數(shù)統(tǒng)計圖和尚未全部完成的成績情況統(tǒng)計表根據(jù)圖表中提供的信息,回答下列問題:

成績

100

90

80

70

60

人數(shù)

21

40

5

頻率

(1)測試學生中,成績?yōu)?/span>80分的學生人數(shù)有___名;眾數(shù)是___分;中位數(shù)是___分;

若該小學三年級到六年級共有1800名學生,則可估計出成績?yōu)?/span>70分的學生人數(shù)約有多少名?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2+(2k-1)x+k2+1=0,如果方程的兩根之和等于兩根之積,求k的值.

查看答案和解析>>

同步練習冊答案