如圖所示,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分線,DE⊥AB,垂足為E,若AB=10cm,求△DBE的周長.

解:求△DBE的周長,即求DE+EB+BD的值.
∵AD平分∠CAB,且∠C=90°,DE⊥AB,
∴DC=DE.(1分)
可證△ACD≌△AED.∴AC=AE.(3分).
又∵AC=BC,
∴DE+EB+BD=DC+EB+BD=BC+EB=AC+EB=AE+EB=AB.(4分).
又∵AB=10cm,
∴△DBE的周長=DB+BE+DE=10cm.
∴△DBE的周長是10cm.(6分).
分析:由題中條件可得Rt△ACD≌Rt△AED,進而得出AC=AE,AC=AE,把△BDE的邊長通過等量轉(zhuǎn)化即可得出結(jié)論.
點評:本題主要考查了角平分線的性質(zhì)以及全等三角形的判定及性質(zhì),能夠掌握并熟練運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于點F,求∠BFE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,D是AC的中點,E是線段BC延長線上一點,過點A作AF∥BC交ED的延長線于點F,連接AE,CF.
求證:(1)四邊形AFCE是平行四邊形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖所示,在△ABC中,DM、EN分別垂直平分AB和AC,交BC于D、E,若∠DAE=50°,則∠BAC=
115
度,若△ADE的周長為19cm,則BC=
19
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖所示,在△ABC中,AB=AC,DE是邊AB的垂直平分線,交AB于E,交AC于D,若△BCD的周長為18cm,△ABC的周長為30cm,那么BE的長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P點在BC上從B點向C點運動(不包括點C),點P的運動速度為2cm∕s;Q點在AC上從C點向點A運動(不包括點A),運動速度為5cm∕s,若點P、Q分別從B、C同時運動,請解答下面的問題,并寫出主要過程.
(1)經(jīng)過多長時間后,P、Q兩點的距離為5
2
cm?
(2)經(jīng)過多長時間后,△PCQ面積為15cm2?

查看答案和解析>>

同步練習(xí)冊答案