【題目】如圖,在由邊長為1個單位長度的小正方形組成的網(wǎng)格圖中,△ABC的頂點(diǎn)都在網(wǎng)格線交點(diǎn)上.
(1)圖中AC邊上的高為 個單位長度;
(2)只用沒有刻度的直尺,在所給網(wǎng)格圖中按如下要求畫圖(保留必要痕跡):
①以點(diǎn)C為位似中心,把△ABC按相似比1:2縮小,得到△DEC;
②以AB為一邊,作矩形ABMN,使得它的面積恰好為△ABC的面積的2倍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形中,邊長,兩條對角線相交所成的銳角為,是邊的中點(diǎn),是對角線上的一個動點(diǎn),則的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,,點(diǎn)的坐標(biāo)為,拋物線經(jīng)過兩點(diǎn).
(1)求拋物線的解析式;
(2)點(diǎn)是直線上方拋物線上的一點(diǎn),過點(diǎn)作軸于點(diǎn),交線段于點(diǎn),使.
①求點(diǎn)的坐標(biāo)和的面積;
②在直線上是否存在點(diǎn),使為直角三角形?若存在,直接寫出符合條件的所有點(diǎn)的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形紙片ABCD,AB=4,BC=3,點(diǎn)P在BC邊上,將△CDP沿DP折疊,點(diǎn)C落在點(diǎn)E處,PE、DE分別交AB于點(diǎn)O、F,且OP=OF,則BF的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,ABCD的對角線AC、BD相交于點(diǎn)O,∠BDC=45°,過點(diǎn)B作BH⊥DC交DC的延長線于點(diǎn)H,在DC上取DE=CH,延長BH至F,使FH=CH,連接DF、EF.
(1)若AB=2,AD=,求BH的值;
(2)求證:AC=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某漁船在海面上朝正西方向以30海里/小時的速度勻速航行,在A處觀測到燈塔C在北偏西60°方向上,航行1小時到達(dá)B處,此時觀測到燈塔C在北偏西30°方向上。若該船繼續(xù)向西航行至離燈塔最近的位置,求此時漁船到燈塔的距離.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在△ABC中,以AB為直徑的⊙O交AC于點(diǎn)D,點(diǎn)E在BC上,連接BD,DE,∠CDE=∠ABD.
(1)求證:DE是⊙O的切線.
(2)如圖②,當(dāng)∠ABC=90°時,線段DE與BC有什么數(shù)量關(guān)系?請說明理由.
(3)如圖③,若AB=AC=10,sin∠CDE=,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】商場今年2月份營業(yè)額為400萬元,3月份的營業(yè)額比2月份增加10%,5月份的營業(yè)額達(dá)到633.6萬元.若設(shè)商場3月份到5月份營業(yè)額的月平均增長率為x,則下面列出的方程中正確的是( )
A.633.6(1+x)2=400(1+10%)B.633.6(1+2x)2=400×(1010%)
C.400×(1+10%)(1+2x)2=633.6D.400×(1+10%)(1+x)2=633.6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC中,點(diǎn)D在AC上(CD<AC),連接BD.操作:以A為圓心,AD長為半徑畫弧,交BD于點(diǎn)E,連接AE.
(1)請補(bǔ)全圖形,探究∠BAE、∠CBD之間的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)把BD繞點(diǎn)D順時針旋轉(zhuǎn)60°,交AE于點(diǎn)F,若EF=mAF,求的值(用含m的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com