精英家教網 > 初中數學 > 題目詳情
如圖,已知AD∥BC,欲證△ABC≌△CDA,根據SAS知,需補充的一個條件
AD=CB
AD=CB
分析:已知AD∥BC,可得∠DAC=∠BCA,然后找到公共邊AC,根據全等三角形的判定,只需找出AD=CB,便可根據SAS來判定三角形全等.
解答:解:∵AD∥BC,
∴∠DAC=∠BCA,
在△ABC和△CDA,
AC=CA
∠DAC=∠BCA
AD=CB

∴△ABC≌△CDA(SAS),
故答案為:AD=CB.
點評:本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

9、如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠ABC=
68°
,∠C=
56°

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AD=BC.EC⊥AB.DF⊥AB,C.D為垂足,要使△AFD≌△BEC,還需添加一個條件.若以“ASA”為依據,則添加的條件是
∠A=∠B
∠A=∠B

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AD=BC,AC=BD,∠DAC與∠CBD有什么關系?說說你的理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AD∥BC,AD平分∠CAE,試說明△ABC是等腰三角形.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,已知AD∥BC,∠1=∠2,∠A=112°,且BD⊥CD,則∠C=
56°
56°

查看答案和解析>>

同步練習冊答案