如圖,已知AB∥CD,∠AEC=90°,那么∠A與∠C的度數(shù)和為多少度?為什么?
解:∠A與∠C的度數(shù)和為 _________ .
理由:過點E作EF∥AB,
∵EF∥AB,
∴∠A+∠AEF=180°( _________ ).
∵AB∥CD( _________ ),EF∥AB,
∴EF∥CD( _________ )
∴ _________ (兩直線平行,同旁內(nèi)角互補)
∴∠A+∠AEF+∠CEF+∠C= _________ °(等式的性質(zhì))
即∠A+∠AEC+∠C= _________ °
∵∠AEC=90°(已知)
∴∠A+∠C= _________ °(等式的性質(zhì)).
270°,完成理由證明見解析.
解析試題分析:
關鍵是過點E作EF∥AB,
則利用兩直線平行,同旁內(nèi)角互補。得∠A+∠AEF=180°
再有AB∥CD和 EF∥AB,可知EF∥CD
由兩直線平行,同旁內(nèi)角互補,得到∠C+∠CEF=180°
則得到∠A+∠AEF+∠CEF+∠C=360°,據(jù)等式的性質(zhì) 即∠A+∠AEC+∠C=360°
又∠AEC=90°得到∠A+∠C=270°.
試題解析:∠A與∠C的度數(shù)和為 270°.
理由:過點E作EF∥AB,
∵EF∥AB,
∴∠A+∠AEF=180°(兩直線平行,同旁內(nèi)角互補).
∵AB∥CD( 已知 ),EF∥AB,
∴EF∥CD(平行于同一條直線的兩條直線互相平行)
∴∠C+∠CEF=180°(兩直線平行,同旁內(nèi)角互補)
∴∠A+∠AEF+∠CEF+∠C= 360°(等式的性質(zhì))
即∠A+∠AEC+∠C= 360°°
∵∠AEC=90°(已知)
∴∠A+∠C= 270°(等式的性質(zhì)).
考點:兩直線平行,同旁內(nèi)角互補.
科目:初中數(shù)學 來源: 題型:解答題
已知AB∥CD,分別探討下列四個圖形中∠APC和∠A、∠C的關系,并選擇圖(1)、(2)之一說明理由。 (10分)
(1) (2) (3) (4)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
已知:如圖,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求證:DG⊥BC
證明:∵EF⊥AB CD⊥AB
∴∠EFA=∠CDA=90°(垂直定義)
∠1=∠
∴EF∥CD
∴∠1=∠2(已知)
∴∠2=∠ACD(等量代換)
∴DG∥AC
∴∠DGB=∠ACB
∵AC⊥BC(已知)
∴∠ACB=90°(垂直定義)
∴∠DGB=90°即DG⊥BC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
如圖,以∠AOB的頂點O為圓心,適當長為半徑畫弧,交OA于點C,交OB于點D.再分別以點C、D為圓心,大于CD的長為半徑畫弧,兩弧在∠AOB內(nèi)部交于點E,過點E作射線OE,連接CD.則下列說法錯誤的是
A.射線OE是∠AOB的平分線
B.△COD是等腰三角形
C.C、D兩點關于OE所在直線對稱
D.O、E兩點關于CD所在直線對稱
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com