【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)請判斷AB與CD的位置關(guān)系并說明理由;
(2)如圖2,當∠E=90°且AB與CD的位置關(guān)系保持不變,移動直角頂點E,使∠MCE=∠ECD,當直角頂點E點移動時,問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;
(3)如圖3,P為線段AC上一定點,點Q為直線CD上一動點且AB與CD的位置關(guān)系保持不變,當點Q在射線CD上運動時(點C除外)∠CPQ+∠CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.
【答案】解:(1)∵CE平分∠ACD,AE平分∠BAC,
∴∠BAC=2∠EAC,∠ACD=2∠ACE,
∵∠EAC+∠ACE=90°,
∴∠BAC+∠ACD=180°,
∴AB∥CD;
(2)∠BAE+∠MCD=90°;
過E作EF∥AB,
∵AB∥CD,
∴EF∥AB∥CD,
∴∠BAE=∠AEF,∠FEC=∠DCE,
∵∠E=90°,
∴∠BAE+∠ECD=90°,
∵∠MCE=∠ECD,
∴∠BAE+∠MCD=90°;
(3)∵AB∥CD,
∴∠BAC+∠ACD=180°,
∵∠QPC+∠PQC+∠PCQ=180°,
∴∠BAC=∠PQC+∠QPC.
【解析】(1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2∠EAC,∠ACD=2∠ACE,再由∠EAC+∠ACE=90°可知∠BAC+∠ACD=180,故可得出結(jié)論;
(2)過E作EF∥AB,根據(jù)平行線的性質(zhì)可知EF∥AB∥CD,∠BAE=∠AEF,∠FEC=∠DCE,故∠BAE+∠ECD=90°,再由∠MCE=∠ECD即可得出結(jié)論;
(3)根據(jù)AB∥CD可知∠BAC+∠ACD=180°,∠QPC+∠PQC+∠PCQ=180°,故∠BAC=∠PQC+∠QPC.
【考點精析】本題主要考查了平行線的性質(zhì)的相關(guān)知識點,需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補才能正確解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】一商場內(nèi)的一座自動扶梯所在的斜邊的坡度為i=1:2.4,小明站在自動扶梯上,當他沿著斜坡向上方向前進了13米時,他在鉛垂方向升高了_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2017年,小欖鎮(zhèn)GDP總量約31600000000元,數(shù)據(jù)31600000000科學記數(shù)法表示為( 。
A.0.316×1010B.0.316×1011C.3.16×1010D.3.16×1011
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列命題中,真命題是( )
A.對角線互相垂直且相等的四邊形是正方形
B.等腰梯形既是軸對稱圖形又是中心對稱圖形
C.圓的切線垂直于經(jīng)過切點的半徑
D.垂直于同一直線的兩條直線互相垂直
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商家預測一種應季襯衫能暢銷市場,就用13200元購進了一批這種襯衫,面市后果然供不應求.商家又用28800元購進了第二批這種襯衫,所購數(shù)量是第一批購進量的2倍,但單價貴了10元.
(1)該商家購進的第一批襯衫是多少件?
(2)若兩批襯衫按相同的標價銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤率不低于25%(不考慮其它因素),那么每件襯衫的標價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥DE,∠B=60°,AE⊥BC,垂足為點E.
(1)求∠AED的度數(shù);
(2)當∠EDC滿足什么條件時,AE∥DC,證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一副三角尺的直角頂點疊放在點C處,∠D=30°,∠B=45°,求:
(1)若∠DCE=35°,求∠ACB的度數(shù).
(2)若∠ACB=120°,求∠DCE的度數(shù).
(3)猜想∠ACB和∠DCE的關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com