如圖①,在□ABCD中,對角線AC⊥AB,BC=10,tan∠B=2.點E是BC邊上的動點,過點E作EF⊥BC于點E,交折線AB-AD于點F,以EF為邊在其右側(cè)作正方形EFGH,使EH邊落在射線BC上.點E從點B出發(fā),以每秒1個單位的速度在BC邊上運(yùn)動,當(dāng)點E與點C重合時,點E停止運(yùn)動,設(shè)點E的運(yùn)動時間為t()秒.
(1)□ABCD的面積為          ;當(dāng)t=      秒時,點F與點A重合;
(2)點E在運(yùn)動過程中,連接正方形EFGH的對角線EG,得△EHG,設(shè)△EHG與△ABC的重疊部分面積為S,請直接寫出S與t的函數(shù)關(guān)系式以及對應(yīng)的自變量t的取值范圍;
(3)作點B關(guān)于點A的對稱點Bˊ,連接CBˊ交AD邊于點M(如圖②),當(dāng)點F在AD邊上時,EF與對角線AC交于點N,連接MN得△MNC.是否存在時間t,使△MNC為等腰三角形?若存在,請求出使△MNC為等腰三角形的時間t;若不存在,請說明理由.


(1)40;2            
(2) 
(3),或,或  

解析試題分析:
(1)考查學(xué)生利用平行四邊形和直角三角形解決基本問題的能力,運(yùn)用直角三角形勾股定理和三角函數(shù)即可得解.
(2)關(guān)鍵確定幾個分界點,通過題意及動點所在位置,確定幾個分界,通過等式得出函數(shù)關(guān)系式.
(3)注意分類情況,可能是CN="CM" 或MN=MC或 MN=NC,分別解出即可.
試題解析:
(1)∵AC⊥AB,∴在Rt△BAC中BC=10,
tan∠B="2"

∴AC=,AB= ∴SRtBAC=40
∴BE=2   ∴         
(2)依題意得分類可得,①當(dāng)△EHG與△ABC的重疊部分都
在△ABC內(nèi)部,S最大面積時,G落在AC上,則
△BEF∽△AFG,  AF=,BF=,AF+BF=,∴,S=
②當(dāng)F點與A點重合時, 即,利用相似三角形、線段相互關(guān)系和面積關(guān)系,得
S=
③當(dāng)F點過A點時,則當(dāng)時,利用相似三角形、線段相互關(guān)系和面積關(guān)系,得
S=
④當(dāng)時,利用相似三角形、線段相互關(guān)系和面積關(guān)系,得
S=


(3)CM=CN時,
MC=MN時,
NM=NC時,   
考點:1.平行四邊形性質(zhì);2.相似三角形判定及性質(zhì)定理;3.動點與取值范圍的關(guān)系.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,在平面直角坐標(biāo)系中,點A、C分別在y軸和x軸上,AB∥x軸,sinC=,點P從O點出發(fā),沿邊OA、AB、BC勻速運(yùn)動,點Q從點C出發(fā),以1cm/s的速度沿邊CO勻速運(yùn)動。點P與點Q同時出發(fā),其中一點到達(dá)終點,另一點也隨之停止運(yùn)動.設(shè)點P運(yùn)動的時間為t(s),△CPQ的面積為S(cm2), 已知S與t之間的函數(shù)關(guān)系如圖2中曲線段OE、線段EF與曲線段FG給出.
(1)點P的運(yùn)動速度為     cm/s, 點B、C的坐標(biāo)分別為     ,     ;
(2)求曲線FG段的函數(shù)解析式;
(3)當(dāng)t為何值時,△CPQ的面積是四邊形OABC的面積的?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

已知直角坐標(biāo)系中有一點A(-4,3),點B在x軸上,△AOB是等腰三角形。
(1)求滿足條件的所有點B的坐標(biāo)。(直接寫出答案)
(2)求過O、A、B三點且開口向下的拋物線的函數(shù)解析式。(只需求出滿足條件的即可)。
(3)在(2)中求出的拋物線上存在點p,使得以O(shè)、A、B、P四點為頂點的四邊形是梯形,求滿足條件的所有點P的坐標(biāo)及相應(yīng)梯形的面積。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,已知拋物線y=ax2+2x+c的頂點為A(―1,―4),與y軸交于點B,與x軸負(fù)半軸交于點C.

(1)求這條拋物線的函數(shù)關(guān)系式;
(2)點P為第三象限內(nèi)拋物線上的一動點,連接BC、PC、PB,求△BCP面積的最大值,并求出此時點P的坐標(biāo);
(3)點E為拋物線上的一點,點F為x軸上的一點,若四邊形ABEF為平行四邊形,請直接寫出所有符合條件的點E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖1,拋物線y=-x2+bx+c的頂點為Q,與x軸交于A(-1,0)、B(5,0)兩點,與y軸交于點C.
(1)求拋物線的解析式及其頂點Q的坐標(biāo);
(2)在該拋物線的對稱軸上求一點P,使得△PAC的周長最小,請在圖中畫出點P的位置,并求點P的坐標(biāo);
(3)如圖2,若點D是第一象限拋物線上的一個動點,過D作DE⊥x軸,垂足為E.
①有一個同學(xué)說:“在第一象限拋物線上的所有點中,拋物線的頂點Q與x軸相距最遠(yuǎn),所以當(dāng)點D運(yùn)動至點Q時,折線D-E-O的長度最長”,這個同學(xué)的說法正確嗎?請說明理由.
②若DE與直線BC交于點F.試探究:四邊形DCEB能否為平行四邊形?若能,請直接寫出點D的坐標(biāo);若不能,請簡要說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,拋物線經(jīng)過A(,0),C(2,-3)兩點,與y軸交于點D,與x軸交于另一點B.
(1)求此拋物線的解析式及頂點坐標(biāo);
(2)若將此拋物線平移,使其頂點為點D,需如何平移?寫出平移后拋物線的解析式;
(3)過點P(m,0)作x軸的垂線(1≤m≤2),分別交平移前后的拋物線于點E,F(xiàn),交直線OC于點G,求證:PF=EG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

在平面直角坐標(biāo)系中,拋物線與x軸交于點A(-2,0)和點B,與y軸交于點C(0,),線段AC上有一動點P從點A出發(fā),以每秒1個單位長度的速度向點C移動,線段AB上有另一個動點Q從點B出發(fā),以每秒2個單位長度的速度向點A移動,兩動點同時出發(fā),設(shè)運(yùn)動時間為t秒.
(1)求該拋物線的解析式;
(2)在整個運(yùn)動過程中,是否存在某一時刻,使得以A,P,Q為頂點的三角形與△AOC相似?如果存在,請求出對應(yīng)的t的值;如果不存在,請說明理由.
(3)在y軸上有兩點M(0,m)和N(0,m+1),若要使得AM+MN+NP的和最小,請直接寫出相應(yīng)的m、t的值以及AM+MN+NP的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,在平面直角坐標(biāo)系中,△ABC的邊AB在x軸上,∠ABC=90°,AB=BC,OA=1,OB=4,拋物
經(jīng)過A、C兩點.
(1)求拋物線的解析式及其頂點坐標(biāo);
(2)如圖①,點P是拋物線上位于x軸下方的一點,點Q與點P關(guān)于拋物線的對稱軸對稱,過點P、Q分別向x軸作垂線,垂足為點D、E,記矩形DPQE的周長為d,求d的最大值,并求出使d最大值時點P的坐標(biāo);
(3)如圖②,點M是拋物線上位于直線AC下方的一點,過點M作MF⊥AC于點F,連接MC,作MN∥BC交直線AC于點N,若MN將△MFC的面積分成2:3兩部分,請確定M點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,點是半圓的半徑上的動點,作.點是半圓上位于左側(cè)的點,連結(jié)交線段,且

(1) 求證:是⊙O的切線.
(2) 若⊙O的半徑為,,設(shè)
①求關(guān)于的函數(shù)關(guān)系式.
②當(dāng)時,求的值.

查看答案和解析>>

同步練習(xí)冊答案