【題目】已知二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),與x軸交于另一點B,拋物線的頂點為D.

(1)求此二次函數(shù)解析式;
(2)連接DC、BC、DB,求證:△BCD是直角三角形;
(3)在對稱軸右側(cè)的拋物線上是否存在點P,使得△PDC為等腰三角形?若存在,求出符合條件的點P的坐標(biāo);若不存在,請說明理由.

【答案】
(1)

解:∵二次函數(shù)y=ax2+bx﹣3a經(jīng)過點A(﹣1,0)、C(0,3),

∴根據(jù)題意,得,

解得,

∴拋物線的解析式為y=﹣x2+2x+3.


(2)

解:由y=﹣x2+2x+3得,D點坐標(biāo)為(1,4),

∴CD==,

BC==3

BD==2,

∵CD2+BC2=(2+(32=20,BD2=(22=20,

∴CD2+BC2=BD2,

∴△BCD是直角三角形;


(3)

解:存在.

y=﹣x2+2x+3對稱軸為直線x=1.

①若以CD為底邊,則P1D=P1C,

設(shè)P1點坐標(biāo)為(x,y),根據(jù)勾股定理可得P1C2=x2+(3﹣y)2,P1D2=(x﹣1)2+(4﹣y)2,

因此2+(3﹣y)2=(x﹣1)2+(4﹣y)2,

即y=4﹣x.

又P1點(x,y)在拋物線上,

∴4﹣x=﹣x2+2x+3,

即x2﹣3x+1=0,

解得x1=,x2=<1,應(yīng)舍去,

∴x=

∴y=4﹣x=,

即點P1坐標(biāo)為().

②若以CD為一腰,

∵點P2在對稱軸右側(cè)的拋物線上,由拋物線對稱性知,點P2與點C關(guān)于直線x=1對稱,

此時點P2坐標(biāo)為(2,3).

∴符合條件的點P坐標(biāo)為(,)或(2,3).


【解析】(1)將A(﹣1,0)、B(3,0)代入二次函數(shù)y=ax2+bx﹣3a求得a、b的值即可確定二次函數(shù)的解析式;
(2)分別求得線BC、CD、BD的長,利用勾股定理的逆定理進行判定即可;
(3)分以CD為底和以CD為腰兩種情況討論.運用兩點間距離公式建立起P點橫坐標(biāo)和縱坐標(biāo)之間的關(guān)系,再結(jié)合拋物線解析式即可求解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣4(a≠0)與x軸交于A(4,0)、B(﹣1,0)兩點,過點A的直線y=﹣x+4交拋物線于點C.

(1)求此拋物線的解析式;
(2)在直線AC上有一動點E,當(dāng)點E在某個位置時,使△BDE的周長最小,求此時E點坐標(biāo);
(3)當(dāng)動點E在直線AC與拋物線圍成的封閉線A→C→B→D→A上運動時,是否存在使△BDE為直角三角形的情況,若存在,請直接寫出符合要求的E點的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在菱形ABCD中,∠A=30°,在同一平面內(nèi),以對角線BD為底邊作頂角為120°的等腰三角形BDE,則∠EBC的度數(shù)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|﹣|﹣(﹣π)0﹣sin30°+(﹣﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】李老師家距學(xué)校1900米,某天他步行去上班,走到路程的一半時發(fā)現(xiàn)忘帶手機,此時離上班時間還有23分鐘,于是他立刻步行回家取手機,隨后騎電瓶車返回學(xué)校.已知李老師騎電瓶車到學(xué)校比他步行到學(xué)校少用20分鐘,且騎電瓶車的平均速度是步行速度的5倍,李老師到家開門、取手機、啟動電瓶車等共用4分鐘.
(1)求李老師步行的平均速度;
(2)請你判斷李老師能否按時上班,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張華在一次數(shù)學(xué)活動中,利用“在面積一定的矩形中,正方形的周長最短”的結(jié)論,推導(dǎo)出“式子x+ (x>0)的最小值是2”.其推導(dǎo)方法如下:在面積是1的矩形中設(shè)矩形的一邊長為x,則另一邊長是 ,矩形的周長是2(x+ );當(dāng)矩形成為正方形時,就有x= (x>0),解得x=1,這時矩形的周長2(x+ )=4最小,因此x+ (x>0)的最小值是2.模仿張華的推導(dǎo),你求得式子 (x>0)的最小值是(
A.2
B.1
C.6
D.10

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題
(1)計算:( ﹣2)0+(﹣1)2014+ ﹣sin45°;
(2)先化簡,再求值:(a2b+ab)÷ ,其中a= +1,b= ﹣1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】學(xué)習(xí)成為現(xiàn)代人的時尚,某市有關(guān)部門統(tǒng)計了最近6個月到圖書館的讀者的職業(yè)分布情況,并做了下列兩個不完整的統(tǒng)計圖.
(1)在統(tǒng)計的這段時間內(nèi),共有萬人次到圖書館閱讀,其中商人占百分比為%;
(2)將條形統(tǒng)計圖補充完整;
(3)若5月份到圖書館的讀者共28000人次,估計其中約有多少人次讀者是職工?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠ABC=45°,AD,BE分別為BC、AC邊上的高,AD、BE相交于點F,連接CF,則下列結(jié)論:①BF=AC; ②∠FCD=45°; ③若BF=2EC,則△FDC周長等于AB的長;其中正確的有( 。

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

同步練習(xí)冊答案