(1)證明:如圖,∵正方形ABCD,
∴AB=AD,∠BAD=∠BAG+∠EAD=90°,
∵DE⊥AG,
∴∠AED=90°,
∴∠EAD+∠ADE=90°,
∴∠ADE=∠BAF,
又∵BF∥DE,
∴∠AFB=∠AED=90°,
在△AED和△BFA中,
∵
,
∴△AED≌△BFA(AAS),
∴BF=AE,
∵AF-AE=EF,
∴AF-BF=EF;
(2)解:如圖,將△ABF繞A點(diǎn)旋轉(zhuǎn)到△ADF′,使B與D重合,連接F′E,
根據(jù)題意知:∠FAF′=90°,DE=AF′=AF,
∴∠F′AE=∠AED=90°,即∠F′AE+∠AED=180°,
∴AF′∥ED,
∴四邊形AEDF′為平行四邊形,又∠AED=90°,
∴四邊形AEDF′是矩形,
∵AD=3,
∴EF′=AD=3.
分析:(1)由四邊形ABCD為正方形,可得出∠BAD為90°,AB=AD,進(jìn)而得到∠BAG與∠EAD互余,又DE垂直于AG,得到∠EAD與∠ADE互余,根據(jù)同角的余角相等可得出∠ADE=∠BAF,利用AAS可得出三角形ABF與三角形ADE全等,利用全等三角的對(duì)應(yīng)邊相等可得出BF=AE,由AF-AE=EF,等量代換可得證;
(2)將△ABF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使得AB與AD重合,記此時(shí)點(diǎn)F的對(duì)應(yīng)點(diǎn)為點(diǎn)F′,連接EF′,如圖所示,由旋轉(zhuǎn)的性質(zhì)可得出∠FAF′為直角,AF=AF′,由第一問的全等可得出AF=DE,等量代換可得出DE=AF′=AF,再利用同旁內(nèi)角互補(bǔ)兩直線平行得到AF′與DE平行,根據(jù)一組對(duì)邊平行且相等的四邊形為平行四邊形可得出AEDF′為平行四邊形,再由一個(gè)角為直角的平行四邊形為矩形可得出AEDF′為矩形,根據(jù)矩形的對(duì)角線相等可得出EF′=AD,由AD的長(zhǎng)即可求出EF′的長(zhǎng).
點(diǎn)評(píng):此題考查了正方形的性質(zhì),全等三角形的判定與性質(zhì),矩形的判定與性質(zhì),以及旋轉(zhuǎn)的性質(zhì),熟練掌握判定與性質(zhì)是解本題的關(guān)鍵.