【題目】如圖,已知△ABC中,∠ACB=90°,AC=8,cosA=,D是AB邊的中點,E是AC邊上一點,聯(lián)結DE,過點D作DF⊥DE交BC邊于點F,聯(lián)結EF.
(1)如圖1,當DE⊥AC時,求EF的長;
(2)如圖2,當點E在AC邊上移動時,∠DFE的正切值是否會發(fā)生變化,如果變化請說出變化情況;如果保持不變,請求出∠DFE的正切值;
(3)如圖3,聯(lián)結CD交EF于點Q,當△CQF是等腰三角形時,請直接寫出BF的長.
【答案】(1)EF=5;(2)不變,理由見解析;(3)BF的長為3或或.
【解析】試題分析:(1)由cosA=,根據(jù)銳角三角函數(shù)的定義可求可求AC=8,AE=4,在Rt△EDF中,由勾股定理求出DE=3,在Rt△AED中,由勾股定理求出EF的長;
(2)過點D作DH⊥AC,DG⊥BC,垂足分別為點H、G,由(1)可得DH=3,DG=4,再證△EDH∽△FDG,得到,然后根據(jù)正切定義求解;
(3)分QF=QC,FQ=FC,CF=CQ三種情況求解.
解:(1)∵∠ACB=90°,
∴,
∵AC=8,
∴AB=10,
∵D是AB邊的中點,
∴,
∵DE⊥AC,
∴∠DEA=∠DEC=90°,
∴,
∴AE=4,
∴CE=8﹣4=4,
∵在Rt△AED中,AE2+DE2=AD2,
∴DE=3,
∵DF⊥DE,
∴∠FDE=90°,
又∵∠ACB=90°,
∴四邊形DECF是矩形,
∴DF=EC=4,
∵在Rt△EDF中,DF2+DE2=EF2,
∴EF=5
(2)不變
如圖2,
過點D作DH⊥AC,DG⊥BC,垂足分別為點H、G,
由(1)可得DH=3,DG=4,
∵DH⊥AC,DG⊥BC,
∴∠DHC=∠DGC=90°
又∵∠ACB=90°,
∴四邊形DHCG是矩形,
∴∠HDG=90°,
∵∠FDE=90°,
∴∠HDG﹣∠HDF=∠EDF﹣∠HDF,
即∠EDH=∠FDG,
又∵∠DHE=∠DGF=90°
∴△EDH∽△FDG,
∴,
∵∠FDE=90°,
∴,
(3)①當QF=QC時,
∴∠QFC=∠QCF,
∵∠EDF+∠ECF=180°,
∴點D,E,C,F四點共圓,
∴∠ECQ=∠DFE,∠DFE+∠QFC=∠ECQ+∠QCF=∠ACB=90°,
即∠DFC=90°,
又∵∠ACB=90°,D是AB的中點,
∴,
∴,
②當FQ=FC時,
∴∠BCD=∠CQF,
∵點D是AB的中點,
∴BD=CD=AB=5,
∴∠BDC=∠BCD,
∴∠BCD=∠FCQ,∠BDC=∠CFQ,
∴△FQC∽△DCB,
由①知,點D,E,C,F四點共圓,
∴∠DEF=∠DCF,
∵∠DQE=∠FQC,
∴△FQC∽△DEQ,
即:△FQC∽△DEQ∽△DCB
∵在Rt△EDF中,,
∴設DE=3k,則DF=4k,EF=5k,
∵∠DEF=∠DCF=∠CQF=∠DQE,
∴DE=DQ=3k,
∴CQ=5﹣3k,
∵△DEQ∽△DCB,
∴,
∴,
∴,
∵△FQC∽△DCB,
∴,
∴,
解得,
∴,
∴,
③當CF=CQ時,如圖3,
∴∠BCD=∠CQF,
由②知,CD=BD,
∴∠BDC=∠BCD,
∵△EDQ∽△BDK,
在BC邊上截取BK=BD=5,過點D作DH⊥BC于H,
∴DH=AC=4,BH=BC=3,由勾股定理得,
同②的方法得,△CFQ∽△EDQ,
∴設DE=3m,則EQ=3m,EF=5m,
∴FQ=2m,
∵△EDQ∽△BDK,
∴,
∴DQ=m,
∴CQ=FC=5﹣m,
∵△CQF∽△BDK,
∴,
∴,
解得m=,
∴,
∴.
即:△CQF是等腰三角形時,BF的長為3或或.
科目:初中數(shù)學 來源: 題型:
【題目】小明家的腳踏式垃圾桶如圖,當腳踩踏板時垃圾桶蓋打開最大張角∠ABC =45°,為節(jié)省家里空間小明 想把垃圾桶放到桌下,經(jīng)測量桌子下沿離地面高 55cm,垃圾桶高 BD=33.1cm,桶蓋直徑 BC=28.2cm,問垃圾桶放到桌下踩踏板時,桶蓋完全打開有沒有碰到桌子下沿?( 1.41 )
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C是⊙O上一點,D在AB的延長線上,且∠BCD=∠A.
(1)求證:CD是⊙O的切線;
(2)若⊙O的半徑為3,CD=4,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與CD相交于點O,OF,OD分別是∠AOE,∠BOE的平分線.
(1)寫出∠DOE的補角;
(2)若∠BOE=62°,求∠AOD和∠EOF的度數(shù);
(3)試問射線OD與OF之間有什么特殊的位置關系?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在今年“綠色清明,文明祭祀”活動中,某花店用元購進若干菊花,很快售完,接著又用元購進第二批菊花,已知第二批所購進菊花的數(shù)量是第一批所購進菊花數(shù)量的倍,且每朵菊花的進價比第一批每朵菊花的進價多元.
(1)求第一批每朵瓶菊花的進價是多少元?
(2)若第一批每朵菊花按元售價銷售,要使總利潤不低于元(不考慮其他因素),第二批每朵菊花的售價至少是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=30cm,BC=40cm.點P從點A出發(fā),以5cm/s的速度沿AC向終點C勻速移動.過點P作PQ⊥AB,垂足為點Q,以PQ為邊作正方形PQMN,點M在AB邊上,連接CN.設點P移動的時間為t(s).
(1)PQ=______;(用含t的代數(shù)式表示)
(2)當點N分別滿足下列條件時,求出相應的t的值;①點C,N,M在同一條直線上;②點N落在BC邊上;
(3)當△PCN為等腰三角形時,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,圓柱形玻璃杯,高為,底面周長為,在杯內(nèi)離杯底的點處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿與蜂蜜相對的點處,則螞蟻到達蜂蜜的最短距離為( ).
A. 15B. C. 12D. 18
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=2x+6交x軸于A,交y軸于B.
(1)直接寫出A( , ),B( , );
(2)如圖1,點E為直線y=x+2上一點,點F為直線y=x上一點,若以A,B,E,F為頂點的四邊形是平行四邊形,求點E,F的坐標
(3)如圖2,點C(m,n)為線段AB上一動點,D(﹣7m,0)在x軸上,連接CD,點M為CD的中點,求點M的縱坐標y和橫坐標x之間的函數(shù)關系式,并直接寫出在點C移動過程中點M的運動路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩組工人同時加工某種零件,乙組工作中有一次停產(chǎn)更換設備,更換設備
后,乙組的工作效率是原來的2倍.兩組各自加工零件的數(shù)量(件)與時間(時)的函數(shù)圖
象如圖所示.
(1)求甲組加工零件的數(shù)量y與時間之間的函數(shù)關系式.(2分)
(2)求乙組加工零件總量的值.(3分)
(3)甲、乙兩組加工出的零件合在一起裝箱,每夠300件裝一箱,零件裝箱的時間忽略不計,求經(jīng)過多長時間恰好裝滿第1箱?再經(jīng)過多長時間恰好裝滿第2箱?(5分)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com