【題目】一個射手連續(xù)射靶22次,其中三次射中10環(huán),7次射中9環(huán),9次射中8環(huán),3次射中7環(huán),則射中環(huán)數(shù)的中位數(shù)和眾數(shù)分別為( )

A. 89 B. 8,8 C. 8.58 D. 8.5,9

【答案】B

【解析】

試題在這一組數(shù)據(jù)中,8出現(xiàn)了9次,次數(shù)最多是眾數(shù);把這組數(shù)據(jù)從大到小的順序排列后可得中間兩個數(shù)的平均數(shù)是8,所以這組數(shù)據(jù)的中位數(shù)是8.故答案選B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班為了從甲、乙兩同學(xué)中選出班長,進行了一次演講答辯和民主測評,A、B、C、D、E五位老師作為評委,對“演講答辯”情況進行了評價,全班50位同學(xué)參與了民主測評,結(jié)果如下表:
表一 演講答辯得分

表二 民主測評得票

規(guī)則:①演講答辯得分按“去掉一個最高分和一個最低分后,再算出平均分”的方法確定;②民主測評得分=“好”票數(shù)×2分+“較好”票數(shù)×1分+“一般”票數(shù)×0分;③演講答辯得分和民主測評得分按4:6確定權(quán)重,計算綜合得分,請你計算一下甲、乙的綜合得分,選出班長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】問題:如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45°,試判斷BE、EF、FD之間的數(shù)量關(guān)系.

【發(fā)現(xiàn)證明】小聰把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,從而發(fā)現(xiàn)EF=BE+FD,請你利用圖(1)證明上述結(jié)論.

【類比引申】如圖(2),四邊形ABCD中,∠BAD≠90°,AB=AD,∠B+∠D=180°,點E、F分別在邊BC、CD上,則當(dāng)∠EAF與∠BAD滿足 關(guān)系時,仍有EF=BE+FD.

【探究應(yīng)用】如圖(3),在某公園的同一水平面上,四條通道圍成四邊形ABCD.已知AB=AD=80米,∠B=60°,∠ADC=120°,∠BAD=150°,道路BC、CD上分別有景點E、F,且AE⊥AD,DF=40(﹣1)米,現(xiàn)要在E、F之間修一條筆直道路,求這條道路EF的長(結(jié)果取整數(shù),參考數(shù)據(jù): =1.41, =1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知|a1|+|b+2|0,則ab的值為(

A. 1B. 1C. 3D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)yx22x+1的圖象與坐標(biāo)軸的交點個數(shù)是( 。

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將拋物線y3x2的圖象先向下平移3個單位,再向左平移4個單位所得的解析式為(  )

A.y3x32+4B.y3x+423

C.y3x42+3D.y3x423

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)學(xué)生為了解該校學(xué)生喜歡球類活動的情況,隨機抽取了若干名學(xué)生進行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下面的問題:

(1)參加調(diào)查的學(xué)生共有 ,在扇形圖中,表示其他球類的扇形的圓心角為 度;

(2)將條形圖補充完整;

(3)若該校有2000名學(xué)生,則估計喜歡籃球的學(xué)生共有 人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,點D、F分別在AB,AC上,DF垂直平分AB,EBC的中點,若∠C=70°,則∠EDF=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個平行四邊形中,若一個角的平分線把一條邊分成長是2cm和3cm的兩條線段,求該平行四邊形的周長是多少?

查看答案和解析>>

同步練習(xí)冊答案