方程x2+ax-1=0有
 
個實(shí)數(shù)根;若分式
a2-4a+2
的值為零,則a=
 
分析:判斷方程x2+ax-1=0的根的情況,只要看根的判別式△=b2-4ac的值的符號就可以了.
分式的值是0的條件是分子等于0,而分母不等于0.
解答:解:△=b2-4ac=a2-4×1×(-1)=a2+4>0,
∴方程兩個實(shí)數(shù)根.
若分式
a2-4
a+2
的值為零,則a2-4=0,a+2≠0,解得a=2.
點(diǎn)評:△=b2-4ac>0時,方程有兩個實(shí)數(shù)根,分式
a2-4
a+2
的值為零,求a的值時,不要忽略分母不能為0這一條件.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

4、若關(guān)于x的方程x2-ax=0有一個根是1,則方程的另一根為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、若方程x2+ax-2a=0的一根為1,則a的取值和方程的另一根分別是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

關(guān)于x的方程x2+ax+b=0的兩根為2與-3,則二次三項(xiàng)式x2+ax+b可分解為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如果x1,x2是方程x2-ax+a+3=0(a為實(shí)數(shù))的兩個實(shí)數(shù)根,則x12+x22的最小值為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若x=1是方程x2+ax-1=4的解,則a=
4
4

查看答案和解析>>

同步練習(xí)冊答案