如圖,拋物線y=-x2+bx+2交x軸于A、B兩點(點B在點A的左側),交y軸于點C,其對稱軸為x=,O為坐標原點.
(1)求A、B、C三點的坐標;
(2)求證:∠ACB是直角;
(3)拋物線上是否存在點P,使得∠APB為銳角?若存在,求出點P的橫坐標的取值范圍;若不存在,請說明理由.

【答案】分析:(1)依題意可得A,B.C三點坐標;
(2)設拋物線的對稱軸交x軸于M點,則M為AB的中點,AB為⊙M的直徑,故∠ACB=90°;
(3)連接CD,求出D點坐標,如圖1.設點P(x,y)是拋物線上任意一點,要使得∠APB為銳角,分情況討論P點坐標.
解答:
(1)解:D=A、B、C三點的坐標分別為(4,O),(-1,O),(O,2).

(2)證明:△BOC∽△COA,∠BC0=∠CAO.

(3)解:設拋物線的對稱軸交x軸于M點,則M為AB的中點,
且其坐標為(,0),∠BCA=90°,
∵B、C、A三點都在以BA為直徑的0M上,
又拋物線y=-++2和⊙M都關于直線x=對稱.
∴c點關于x=的對稱點D必在拋物線上,也在⊙M上.
連接CD,交直線x=交于N點,易知N點坐標為(,2),而N為CD的中點,
∴D點坐標為(3,2),(7分)
作出⊙M,則⊙M將拋物線分成BC段、CD段、DA段及x軸下方的部分(如圖1所示).
設點P(x,y)是拋物線上任意一點,
當P點在CD段(不包括C、D兩點)及在x軸下方的部分時,P點均在⊙M外.
當P點在⊙M外時,不失一般性,令P點在CD段,
連接BP交OM于Q點,連接AQ、AP(如圖2),則:
∠BQA是△PAQ的外角.
∴∠APQ<AQB.
又AB是⊙M的直徑∠AQB-90°,
∴∠APB<90°,
故當P點在OM外時,P點對線段BA所張的角為銳角,即∠APB為銳角.
即當x<-1或0<x<3或x>4時,∠APB為銳角.
故拋物線上存在點P,當點P的橫坐標x滿足x<-1或O<x<3或x>4時,∠APB為銳角.(10分)
點評:本題考查的是二次函數(shù)的兩點坐標式以及圓的切線等綜合知識,難度較大.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

26、已知:如圖,拋物線C1,C2關于x軸對稱;拋物線C1,C3關于y軸對稱.拋物線C1,C2,C3與x軸相交于A、B、C、D四點;與y相交于E、F兩點;H、G、M分別為拋物線C1,C2,C3的頂點.HN垂直于x軸,垂足為N,且|OE|>|HN|,|AB|≠|HG|
(1)A、B、C、D、E、F、G、H、M9個點中,四個點可以連接成一個四邊形,請你用字母寫出下列特殊四邊形:菱形
AHBG
;等腰梯形
HGEF
;平行四邊形
EGFM
;梯形
DMHC
;(每種特殊四邊形只能寫一個,寫錯、多寫記0分)
(2)證明其中任意一個特殊四邊形;
(3)寫出你證明的特殊四邊形的性質.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線交x軸于點A(-2,0),點B(4,0),交y軸于點C(0,4).
(1)求拋物線的解析式,并寫出頂點D的坐標;
(2)若直線y=x交拋物線于M,N兩點,交拋物線的對稱軸于點E,連接BC,EB,EC.試判斷△EBC的形狀,并加以證明;
(3)設P為直線MN上的動點,過P作PF∥ED交直線MN上方的拋物線于點F.問:在直線MN上是否存在點P,使得以P,E,D,F(xiàn)為頂點的四邊形是平行四邊形?若存在,請求出點P及相應的點F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線的頂點坐標為M(1,4),與x軸的一個交點是A(-1,0),與y軸交于點B,直線x=1交x軸于點N.
(1)求拋物線的解析式及點B的坐標;
(2)求經(jīng)過B、M兩點的直線的解析式,并求出此直線與x軸的交點C的坐標;
(3)若點P在拋物線的對稱軸x=1上運動,請你探索:在x軸上方是否存在這樣的P點,使精英家教網(wǎng)以P為圓心的圓經(jīng)過點A,并且與直線BM相切?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+bx+c交x軸于點A(-3,0),點B(1,0),交y軸于點E(0,-3)精英家教網(wǎng).點C是點A關于點B的對稱點,點F是線段BC的中點,直線l過點F且與y軸平行.直線y=-x+m過點C,交y軸于D點.
(1)求拋物線的函數(shù)表達式;
(2)點K為線段AB上一動點,過點K作x軸的垂線與直線CD交于點H,與拋物線交于點G,求線段HG長度的最大值;
(3)在直線l上取點M,在拋物線上取點N,使以點A,C,M,N為頂點的四邊形是平行四邊形,求點N的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,拋物線y=ax2+bx+c(a≠0)與x軸兩交點是A(-1,0),B(3,0),則如圖可知y<0時,x的取值范圍是( 。
A、-1<x<3B、3<x<-1C、x>-1或x<3D、x<-1或x>3

查看答案和解析>>

同步練習冊答案