【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過(guò)點(diǎn)A作AD∥BC,與∠ABC的平分線交于點(diǎn)D,BD與AC交于點(diǎn)E,與⊙O交于點(diǎn)F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
(3)求證:AD是⊙O的切線.
【答案】(1)∠DAF=36°;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.
【解析】
(1)求出∠ABC、∠ABD、∠CBD的度數(shù),求出∠D度數(shù),根據(jù)三角形內(nèi)角和定理求出∠BAF和∠BAD度數(shù),即可求出答案;
(2)求出△AEF∽△DEA,根據(jù)相似三角形的性質(zhì)得出即可;
(3)連接AO,求出∠OAD=90°即可.
(1)∵AD∥BC,
∴∠D=∠CBD,
∵AB=AC,∠BAC=36°,
∴∠ABC=∠ACB=×(180°﹣∠BAC)=72°,
∴∠AFB=∠ACB=72°,
∵BD平分∠ABC,
∴∠ABD=∠CBD=∠ABC=×72°=36°,
∴∠D=∠CBD=36°,
∴∠BAD=180°﹣∠D﹣∠ABD=180°﹣36°﹣36°=108°,
∠BAF=180°﹣∠ABF﹣∠AFB=180°﹣36°﹣72°=72°,
∴∠DAF=∠DAB﹣∠FAB=108°﹣72°=36°;
(2)證明:∵∠CBD=36°,∠FAC=∠CBD,
∴∠FAC=36°=∠D,
∵∠AED=∠AEF,
∴△AEF∽△DEA,
∴,
∴AE2=EF×ED;
(3)證明:連接OA、OF,
∵∠ABF=36°,
∴∠AOF=2∠ABF=72°,
∵OA=OF,
∴∠OAF=∠OFA=×(180°﹣∠AOF)=54°,
由(1)知∠DAF=36°,
∴∠DAO=36°+54°=90°,
即OA⊥AD,
∵OA為半徑,
∴AD是⊙O的切線.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.
(1)求二次函數(shù)的表達(dá)式;
(2)如圖1,連接DC,DB,設(shè)△BCD的面積為S,求S的最大值;
(3)如圖2,過(guò)點(diǎn)D作DM⊥BC于點(diǎn)M,是否存在點(diǎn)D,使得△CDM中的某個(gè)角恰好等于∠ABC的2倍?若存在,直接寫(xiě)出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,AB是直徑,CD是弦,AB⊥CD于點(diǎn)E,BF∥OC,連接BC和CF,CF交AB于點(diǎn)G.
(1)求證:∠OCF=∠BCD;
(2)若CD=4,tan∠OCF=,求⊙O半徑的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)(4,4),請(qǐng)解答下列問(wèn)題:
(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo);
(2)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A2B2C2,并求出點(diǎn)A到A2的路徑長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1,且過(guò)點(diǎn)(,0).有下列結(jié)論:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正確的結(jié)論是_____(填寫(xiě)正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy內(nèi)有三點(diǎn):(0,﹣2),(1,﹣1),(2.17,0.37).則過(guò)這三個(gè)點(diǎn)_____(填“能”或“不能”)畫(huà)一個(gè)圓,理由是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)A(x,0),B(x,y),若線段AB上存在一點(diǎn)Q滿足,則稱點(diǎn)Q是線段AB的“倍分點(diǎn)”.
(1)若點(diǎn)A(1,0),AB=3,點(diǎn)Q是線段AB的“倍分點(diǎn)”.
①求點(diǎn)Q的坐標(biāo);
②若點(diǎn)A關(guān)于直線y=x的對(duì)稱點(diǎn)為A′,當(dāng)點(diǎn)B在第一象限時(shí),求;
(2)⊙T的圓心T(0,t),半徑為2,點(diǎn)Q在直線y= x上,⊙T上存在點(diǎn)B,使點(diǎn)Q是線段AB的“倍分點(diǎn)”,直接寫(xiě)出t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過(guò)A,C兩點(diǎn),且與x軸交于另一點(diǎn)B(點(diǎn)B在點(diǎn)A右側(cè)).
(1)求拋物線的解析式及點(diǎn)B坐標(biāo);
(2)若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;
(3)試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=6,P為邊CD上一點(diǎn),把△BCP沿直線BP折疊,頂點(diǎn)C折疊到C',連接BC'與AD交于點(diǎn)E,連接CE與BP交于點(diǎn)Q,若CE⊥BE.
(1)求證:△ABE∽△DEC;
(2)當(dāng)AD=13時(shí),AE<DE,求CE的長(zhǎng);
(3)連接C'Q,直接寫(xiě)出四邊形C'QCP的形狀: .當(dāng)CP=4時(shí),并求CEEQ的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com