【題目】如圖,△ABC內(nèi)接于⊙OABAC,∠BAC36°,過(guò)點(diǎn)AADBC,與∠ABC的平分線交于點(diǎn)D,BDAC交于點(diǎn)E,與⊙O交于點(diǎn)F

(1)求∠DAF的度數(shù);

(2)求證:AE2EFED;

(3)求證:AD是⊙O的切線.

【答案】(1)∠DAF36°;(2)證明見(jiàn)解析;(3)證明見(jiàn)解析.

【解析】

1)求出∠ABC、∠ABD、∠CBD的度數(shù),求出∠D度數(shù),根據(jù)三角形內(nèi)角和定理求出∠BAF和∠BAD度數(shù),即可求出答案;

2)求出AEF∽△DEA,根據(jù)相似三角形的性質(zhì)得出即可;

3)連接AO,求出∠OAD=90°即可.

(1)ADBC,

∴∠D=∠CBD

ABAC,∠BAC36°,

∴∠ABC=∠ACB×(180°﹣∠BAC)72°,

∴∠AFB=∠ACB72°

BD平分∠ABC,

∴∠ABD=∠CBDABC×72°36°

∴∠D=∠CBD36°,

∴∠BAD180°﹣∠D﹣∠ABD180°36°36°108°,

BAF180°﹣∠ABF﹣∠AFB180°36°72°72°,

∴∠DAF=∠DAB﹣∠FAB108°72°36°

(2)證明:∵∠CBD36°,∠FAC=∠CBD,

∴∠FAC36°=∠D,

∵∠AED=∠AEF,

∴△AEF∽△DEA,

,

AE2EF×ED;

(3)證明:連接OA、OF

∵∠ABF36°,

∴∠AOF2ABF72°,

OAOF,

∴∠OAF=∠OFA×(180°﹣∠AOF)54°,

(1)知∠DAF36°,

∴∠DAO36°+54°90°,

OAAD,

OA為半徑,

AD是⊙O的切線.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)B,與y軸交于點(diǎn)C,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)B,C兩點(diǎn),且與x軸的負(fù)半軸交于點(diǎn)A,動(dòng)點(diǎn)D在直線BC下方的二次函數(shù)圖象上.

(1)求二次函數(shù)的表達(dá)式;

(2)如圖1,連接DC,DB,設(shè)BCD的面積為S,S的最大值;

(3)如圖2,過(guò)點(diǎn)DDMBC于點(diǎn)M,是否存在點(diǎn)D,使得CDM中的某個(gè)角恰好等于∠ABC2倍?若存在,直接寫(xiě)出點(diǎn)D的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O中,AB是直徑,CD是弦,ABCD于點(diǎn)E,BFOC,連接BCCF,CFAB于點(diǎn)G

(1)求證:∠OCFBCD

(2)若CD=4,tanOCF,求⊙O半徑的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在正方形網(wǎng)格中,建立如圖所示的平面直角坐標(biāo)系xOy,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)(4,4),請(qǐng)解答下列問(wèn)題:

(1)畫(huà)出△ABC關(guān)于y軸對(duì)稱的△A1B1C1,并寫(xiě)出點(diǎn)A1、B1、C1的坐標(biāo);

(2)將△ABC繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后的△A2B2C2,并求出點(diǎn)AA2的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對(duì)稱軸是x=﹣1,且過(guò)點(diǎn)(,0).有下列結(jié)論:①abc>0;②25a﹣10b+4c=0;③a﹣2b+4c=0;④a﹣b≥m(am﹣b);⑤3b+2c>0;其中所有正確的結(jié)論是_____(填寫(xiě)正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy內(nèi)有三點(diǎn):(0,﹣2),(1,﹣1),(2.17,0.37).則過(guò)這三個(gè)點(diǎn)_____(填不能)畫(huà)一個(gè)圓,理由是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,點(diǎn)Ax,0),Bx,y),若線段AB上存在一點(diǎn)Q滿足,則稱點(diǎn)Q是線段AB倍分點(diǎn)”.

(1)若點(diǎn)A(1,0),AB=3,點(diǎn)Q是線段AB倍分點(diǎn)”.

①求點(diǎn)Q的坐標(biāo);

②若點(diǎn)A關(guān)于直線yx的對(duì)稱點(diǎn)為A,當(dāng)點(diǎn)B在第一象限時(shí),求;

(2)T的圓心T(0,t),半徑為2,點(diǎn)Q在直線y x上,⊙T上存在點(diǎn)B,使點(diǎn)Q是線段AB倍分點(diǎn),直接寫(xiě)出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線經(jīng)過(guò)A,C兩點(diǎn),且與x軸交于另一點(diǎn)B點(diǎn)B在點(diǎn)A右側(cè)

1求拋物線的解析式及點(diǎn)B坐標(biāo);

2若點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過(guò)點(diǎn)M的直線EF平行y軸交x軸于點(diǎn)F,交拋物線于點(diǎn)E.求ME長(zhǎng)的最大值;

3試探究當(dāng)ME取最大值時(shí),在拋物線上、x軸下方是否存在點(diǎn)P,使以M,F(xiàn),B,P為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB6P為邊CD上一點(diǎn),把BCP沿直線BP折疊,頂點(diǎn)C折疊到C',連接BC'AD交于點(diǎn)E,連接CEBP交于點(diǎn)Q,若CEBE

1)求證:ABE∽△DEC;

2)當(dāng)AD13時(shí),AEDE,求CE的長(zhǎng);

3)連接C'Q,直接寫(xiě)出四邊形C'QCP的形狀:   .當(dāng)CP4時(shí),并求CEEQ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案