如圖,點C為線段AB上一點,AC:CB=3:2,D、E兩點分別為AC、AB的中點,若線段DE=2cm,則AB的長為(  )
分析:在一條直線或線段上的線段的加減運算和倍數(shù)運算,首先明確線段間的相互關(guān)系,根據(jù)題目中幾何圖形,再根據(jù)題意進行計算.
解答:解:設AB=x,由已知得:
AC=
3
5
x,BC=
2
5
x,
D、E兩點分別為AC、AB的中點,
∴DC=
3
10
x,BE=
1
2
x,
DE=DC-EC=DC-(BE-BC),
3
10
x-(
1
2
x-
2
5
x)=2,
解得:x=10,
則AB的長為10cm,
故選:D.
點評:利用中點性質(zhì)轉(zhuǎn)化線段之間的倍分關(guān)系是解題的關(guān)鍵,在不同的情況下靈活選用它的不同表示方法,有利于解題的簡潔性.同時,靈活運用線段的和、差、倍、分轉(zhuǎn)化線段之間的數(shù)量關(guān)系也是十分關(guān)鍵的一點.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,點C為線段AB上任意一點(不與A、B重合),分別以AC、BC為一腰在AB的同側(cè)作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD與∠BCE都是銳角且∠ACD=∠BCE,連接AE交CD于點M,連接BD交CE于點N,AE與BD交于點P,連接PC.
(1)求證:△ACE≌△DCB;
(2)請你判斷△AMC與△DMP的形狀有何關(guān)系并說明理由;
(3)求證:∠APC=∠BPC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點C為線段AB上一點.已知AB=5,AC=3,在線段AB的同側(cè)作正方形ACMN和正方形CBQP,連結(jié)BN與CP相交于點R、與MC相交于點G.求△PBR的面積?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如圖,點C為線段AB上一點,△ACM、△CBN都是等邊三角形,AN交CM于點E,BM交CN于點F,求證:
(1)CE=CF;(2)EF∥AB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點C為線段AB上一點,△ACM和△CBN是等邊三角形,若BM=5cm,則AN=
5cm
5cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,點C為線段AB上一點,若線段AC=12cm,AC:CB=3:2,D、E兩點分別為AC、AB的中點,則DE的長為( 。

查看答案和解析>>

同步練習冊答案