某農戶種植一種經濟作物,總用水量y(米3)與種植時間x(天)之間的函數(shù)關系式圖

(1)第20天的總用水量為多少米3?
(2)當x≥20時,求y與x之間的函數(shù)關系式;
(3)種植時間為多少天時,總用水量達到7000米3?

(1)1000; (2)y=300x-5000; (3)40.

解析試題分析::(1)由圖可知第20天的總用水量為1000m 3;
(2)設y=kx+b.把已知坐標代入解析式可求解;
(3)令y=7000代入方程可得.
試題解析:(1)第20天的總用水量為1000米3
(2)當x≥20時,設y=kx+b
∵函數(shù)圖象經過點(20,1000),(30,4000)

解得

∴y與x之間的函數(shù)關系式為:y=300x-5000
(3)當y=7000時,
有7000=300x-5000,解得x=40
答:種植時間為40天時,總用水量達到7000米3
考點:一次函數(shù)的應用.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

已知反比例函數(shù)y=(k為常數(shù),k≠1)
(1)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(2)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,四邊形OABC是矩形,點A、C的坐標分別為(3,0)、(0,1),點D是線段BC上的動點(與端點B、C不重合),過點D作直線交折線OAB于點E.

(1)記的面積為S,求S與b的函數(shù)關系式;
(2)當點E在線段OA上時,若矩形OABC關于直線DE的對稱圖形為四邊形,DE=,試探究四邊形與矩形OABC的重疊部分的面積是否發(fā)生變化,若不變,求出該重疊部分的面積;若改變,請說明理由。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(2,1),B(-1,)兩點.

(1)求m、k、b的值;
(2)連接OA、OB,計算三角形OAB的面積;
(3)結合圖象直接寫出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

某工廠現(xiàn)有甲種原料360kg,乙種原料290kg,計劃用它們生產A、B兩種產品共50件,已知每生產一件A種產品,需要甲種原料9kg、乙種原料3kg,獲利700元,生產一件B種產品,需要甲種原料4kg、乙種原料10kg,可獲利1200元.
(1)利用這些原料,生產A、B兩種產品,有哪幾種不同的方案?
(2)設生產兩種產品總利潤為y(元),其中生產A中產品x(件),試寫出y與x之間的函數(shù)解析式.
(3)利用函數(shù)性質說明,采用(1)中哪種生產方案所獲總利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,直線y=kx-2與x軸、y軸分別交于B、C兩點,OB:OC=
 
(1)求B點的坐標和k的值.
(2)若點A(x,y)是第一象限內的直線y=kx-2上的一個動點,當點A運動過程中,①試寫出△AOB的面積S與x的函數(shù)關系式;②探索:當點A運動到什么位置時,△AOB的面積是1.③在②成立的情況下,x軸上是否存在一點P,使△POA是等腰三角形.若存在,請寫出滿足條件的所有P點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線與x軸、y軸分別交于點A、B,線段AB為直角邊在第一象限內作等腰Rt△ABC,∠BAC=90°.

(1)求△AOB的面積;
(2)求點C坐標;
(3)點P是x軸上的一個動點,設P(x,0)
①請用x的代數(shù)式表示PB2、PC2
②是否存在這樣的點P,使得|PC-PB|的值最大?如果不存在,請說明理由;
如果存在,請求出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

國家推行“節(jié)能減排,低碳經濟”的政策后,某企業(yè)推出一種叫“CNG”的改燒汽油為天然氣的裝置,每輛車改裝費為b元.據市場調查知:每輛車改裝前、后的燃料費(含改裝費)(單位:元)與正常運營時間(單位:天)之間分別滿足關系式:、,如圖所示.

試根據圖像解決下列問題:
(1)每輛車改裝前每天的燃料費=     元,每輛車的改裝費b=    元.正常運營    天后,就可以從節(jié)省燃料費中收回改裝成本.
(2)某出租汽車公司一次性改裝了100輛車,因而,正常運營多少天后共節(jié)省燃料費40萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

義潔中學計劃從榮威公司購買A、B兩種型號的小黑板,經洽談,購買一塊A型小黑板比買一塊B型小黑板多用20元.且購買5塊A型小黑板和4塊B型小黑板共需820元.
(1)求購買一塊A型小黑板、一塊B型小黑板各需要多少元?
(2)根據義潔中學實際情況,需從榮威公司購買A、B兩種型號的小黑板共60塊,要求購買A、B兩種型號小黑板的總費用不超過5240元.并且購買A型小黑板的數(shù)量應大于購買A、B種型號小黑板總數(shù)量的.請你通過計算,求出義潔中學從榮威公司購買A、B兩種型號的小黑板有哪幾種方案?

查看答案和解析>>

同步練習冊答案