在△ABC中,AB=AC,∠BAC<60°,把線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°至BP;如圖所示位置有∠ABQ=60°,∠BCQ=150°.
(1)若∠BAC=30°,則∠ABP= 度;若∠BAC=α,則∠ABP= (用α表示);
(2)求證:△ABQ為等邊三角形;
(3)四邊形CBPQ的面積為1,求△ABC的面積.
(1)15,;(2)證明見(jiàn)解析;(3)1.
【解析】
試題分析:(1)若∠BAC=30°,一方面在△ABC中,AB=AC,可得∠ABC=75°,另一方面由旋轉(zhuǎn)的性質(zhì)知∠CBP=60°,因而∠ABP=15°;若∠BAC=α,同上可得,因而由∠BAC<60°可得,所以;(2)連接CP,AP,由已知和旋轉(zhuǎn)的性質(zhì),通過(guò)證明△ABP≌△ACP(SSS)和△ABP≌△QBC(ASA)來(lái)證明△ABQ為等邊三角形;(3)通過(guò)轉(zhuǎn)換,可得.
試題解析:(1)15;.
(2)如圖,連接CP,AP,
由旋轉(zhuǎn)的性質(zhì)知BC=BP,∠CBP=60°,∴△BCP為等邊三角形. ∴BP=CP,∠BPC=60°.
在△ABP和△ACP中,∵,∴△ABP≌△ACP(SSS). ∴.
又∵∠BCQ=150°,∴ .
在△ABP和△QBC中,∵,∴△ABP≌△QBC(ASA). ∴BA=BQ.
∴△ABQ為等邊三角形.
(3)如圖,過(guò)點(diǎn)A作AH⊥BP交BP的延長(zhǎng)線于點(diǎn)H,則
由(2)得,∴. ∴.
由(2)△ABQ為等邊三角形得,∴. ∴.
由(2)得,∴.
又∵,∴.
考點(diǎn):1. 旋轉(zhuǎn)的性質(zhì);2.等腰三角形的性質(zhì);3.三角形內(nèi)角和定理;4.等邊三角形的判定和性質(zhì);5.全等三角形的判定和性質(zhì);6.轉(zhuǎn)換思想的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
3 | 2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com