【題目】A,B兩站相距330千米,甲、乙兩車都從A站出發(fā)開往B站,甲車先出發(fā),且在途中C站?6分鐘,甲車出發(fā)半小時后,乙車從A站直達B站后停止,兩車之間的距離y(千米)與甲車行駛的時間x(小時)之間的函數(shù)圖象如圖,則乙車恰好追上甲車時距離C站有______千米.
【答案】200
【解析】
分析如圖,根據(jù)題意和圖象分析各關鍵點(即圖象拐點)的坐標求解即可.
解:∵甲車從A地開出0.5h后行駛了80km.
∴甲車的速度為,=200km/h.
又由圖可知乙車從A站直達B站后停止共用了1.6﹣0.5=1.1h.
∴乙車的速度為,=300km/h.
∴乙車從A地出發(fā)第一次與甲車相遇用了=0.8h.
此時甲乙兩車距離A地均為300×0.8=240km.
又由圖得,甲車從A地到達C地用了0.3﹣=0.3﹣0.1=0.2h.
∴A地到C地的距離為,200×0.2=40km.
∴則乙車恰好追上甲車時距離C站有 240﹣40=200km.
故答案為200km.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=x2﹣x﹣3,與x軸交于A和B兩點(點A在點B的左側),與y軸交于點C,過點A的直線與拋物線在第一象限的交點M的橫坐標為,直線AM與y軸交于點D,連接BC、AC.
(1)求直線AD和BC的解折式;
(2)如圖2,E為直線BC下方的拋物線上一點,當△BCE的面積最大時,一線段FG=4(點F在G的左側)在直線AM上移動,順次連接B、E、F、G四點構成四邊形BEFG,請求出當四邊形BEFG的周長最小時點F的坐標;
(3)如圖3,將△DAC繞點D逆時針旋轉角度α(0°<α<180°),記旋轉中的三角形為△DA′C′,若直線A′C′分別與直線BC、y軸交于M、N,當△CMN是等腰三角形時,請直接寫出CM的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標系中的位置如圖所示.
(1)直接寫出關于原點的中心對稱圖形各頂點坐標:________________________;
(2)將繞B點逆時針旋轉,畫出旋轉后圖形.求在旋轉過程中所掃過的圖形的面積和點經過的路徑長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,給出如下定義:已知兩個函數(shù),如果對于任意的自變量,這兩個函數(shù)對應的函數(shù)值記為, 恒有點和點關于點成中心對稱(此三個點可以重合),由于對稱中心都在直線上,所以稱這兩個函數(shù)為關于直線的“相依函數(shù)”。例如: 和為關于直線的 “相依函數(shù)”.
(1)已知點是直線上一點,請求出點關于點成中心對稱的點的坐標:
(2)若直線和它關于直線的“相依函數(shù)”的圖象與軸圍成的三角形的面積為,求的值;
(3)若二次函數(shù)和為關于直線的“相依函數(shù)”.
①請求出的值;
②已知點、點連接直接寫出和兩條拋物線與線段有目只有兩個交占時對應的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】綜合與實踐
背景閱讀 早在三千多年前,我國周朝數(shù)學家商高就提出:將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被記載于我國古代著名數(shù)學著作《周髀算經》中,為了方便,在本題中,我們把三邊的比為3:4:5的三角形稱為(3,4,5)型三角形,例如:三邊長分別為9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形紙片按下面的操作方法可以折出這種類型的三角形.
實踐操作 如圖1,在矩形紙片ABCD中,AD=8cm,AB=12cm.
第一步:如圖2,將圖1中的矩形紙片ABCD沿過點A的直線折疊,使點D落在AB上的點E處,折痕為AF,再沿EF折疊,然后把紙片展平.
第二步:如圖3,將圖2中的矩形紙片再次折疊,使點D與點F重合,折痕為GH,然后展平,隱去AF.
第三步:如圖4,將圖3中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點N,然后展平.
問題解決
(1)請在圖2中證明四邊形AEFD是正方形.
(2)請在圖4中判斷NF與ND′的數(shù)量關系,并加以證明;
(3)請在圖4中證明△AEN(3,4,5)型三角形;
探索發(fā)現(xiàn)
(4)在不添加字母的情況下,圖4中還有哪些三角形是(3,4,5)型三角形?請找出并直接寫出它們的名稱.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平行四邊形ABCD中,以AB為邊作等邊△ABE,點E在CD上,以BC為邊作等邊△BCF,點F在AE上,點G在BA延長線上且FG=FB.
(1)若CD=6,AF=3,求△ABF的面積;
(2)求證:BE=AG+CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場銷售一種商品,該商品的進價為每件10元,物價部門限定,每件該商品的銷售利潤不得超過,銷售過程中發(fā)現(xiàn)月銷售量 (件)與銷售單價 (元)之間的關系滿足:當時,月銷售量為640件;當時,銷售單價每增加1元,月銷售量就減少20件.
(1)請直接寫出與之間的函數(shù)關系式;
(2)設該商品的月利潤為(元),求與之間的函數(shù)關系式,并指出當該商品的銷售單價定為多少元時,月利潤最大,最大月利潤是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A(﹣1,0),B(3,0),交y軸的負半軸于C,頂點為D.下列結論:①2a+b=0;②2c<3b;③當m≠1時,a+b<am2+bm;④當△ABD是等腰直角三角形時,則a= ;⑤當△ABC是等腰三角形時,a的值有3個.其中正確的有( 。﹤.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當△ABC繞點A逆時針旋轉θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當△ABC繞點A逆時針旋轉45°時,如圖3,延長DB交CF于點H.
①求證:BD⊥CF;
②當AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com