【題目】如圖,在平面直角坐標(biāo)系xOy中,ABCO的頂點A,B的坐標(biāo)分別是A(3,0),B(0,2).動點P在直線y= x上運動,以點P為圓心,PB長為半徑的⊙P隨點P運動,當(dāng)⊙P與ABCO的邊相切時,P點的坐標(biāo)為

【答案】(0,0)或( ,1)或(3﹣ ,
【解析】解:①當(dāng)⊙P與BC相切時,∵動點P在直線y= x上,
∴P與O重合,此時圓心P到BC的距離為OB,
∴P(0,0).
②如圖1中,當(dāng)⊙P與OC相切時,則OP=BP,△OPB是等腰三角形,作PE⊥y軸于E,則EB=EO,易知P的縱坐標(biāo)為1,可得P( ,1).

③如圖2中,當(dāng)⊙P與OA相切時,則點P到點B的距離與點P到x軸的距離線段,可得 = x,

解得x=3+ 或3﹣ ,
∵x=3+ >OA,
∴P不會與OA相切,
∴x=3+ 不合題意,
∴p(3﹣ , ).
④如圖3中,當(dāng)⊙P與AB相切時,設(shè)線段AB與直線OP的交點為G,此時PB=PG,

∵OP⊥AB,
∴∠BGP=∠PBG=90°不成立,
∴此種情形,不存在P.
綜上所述,滿足條件的P的坐標(biāo)為(0,0)或( ,1)或(3﹣ , ).
【考點精析】通過靈活運用一次函數(shù)的圖象和性質(zhì)和切線的性質(zhì)定理,掌握一次函數(shù)是直線,圖像經(jīng)過仨象限;正比例函數(shù)更簡單,經(jīng)過原點一直線;兩個系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來相見,k為正來右上斜,x增減y增減;k為負(fù)來左下展,變化規(guī)律正相反;k的絕對值越大,線離橫軸就越遠(yuǎn);切線的性質(zhì):1、經(jīng)過切點垂直于這條半徑的直線是圓的切線2、經(jīng)過切點垂直于切線的直線必經(jīng)過圓心3、圓的切線垂直于經(jīng)過切點的半徑即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點D位于△ABC邊AC上,已知AB是AD與AC的比例中項.
(1)求證:∠ACB=∠ABD;
(2)現(xiàn)有點E、F分別在邊AB、BC上如圖2,滿足∠EDF=∠A+∠C,當(dāng)AB=4,BC=5,CA=6時,求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=﹣x2+bx+c的圖象經(jīng)過點A(m,0)、B(0,n),其中m、n是方程x2﹣6x+5=0的兩個實數(shù)根,且m<n.

(1)求拋物線的解析式;
(2)設(shè)(1)中的拋物線與x軸的另一個交點為C,拋物線的頂點為D,求C、D點的坐標(biāo)和△BCD的面積;
(3)P是線段OC上一點,過點P作PH⊥x軸,交拋物線于點H,若直線BC把△PCH分成面積相等的兩部分,求P點的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y1=x-1與反比例函數(shù)y= 的圖像交于點A(2,1),B(-1,-2),則使y1>y2的x的取值范圍是( ).


A.x>2
B.x>2或-1<x<0
C.-1<x<2
D.x>2或x<-1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在△ABC中,BC=AC,以BC為直徑的 O與邊AB相交于點D,DE⊥AC,垂足為點E.
(1)求證:點D是AB的中點;
(2)判斷DE與 O的位置關(guān)系,并證明你的結(jié)論;
(3)若 O的直徑為3,cosB= ,求DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“蘭州中山橋“位于蘭州濱河路中段白塔山下、金城關(guān)前,是黃河上第一座真正意義上的橋梁,有“天下黃河第一橋“之美譽.它像一部史詩,記載著蘭州古往今來歷史的變遷.橋上飛架了5座等高的弧形鋼架拱橋. 小蕓和小剛分別在橋面上的A,B兩處,準(zhǔn)備測量其中一座弧形鋼架拱梁頂部C處到橋面的距離AB=20m,小蕓在A處測得∠CAB=36°,小剛在B處測得∠CBA=43°,求弧形鋼架拱梁頂部C處到橋面的距離.(結(jié)果精確到0.1m)(參考數(shù)據(jù)sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin43°≈0.68,cos43°≈0.73,tan43°≈0.93)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某跳水隊為了解運動員的年齡情況,作了一次年齡調(diào)查,根據(jù)跳水運動員的年齡(單位:歲),繪制出如下的統(tǒng)計圖①和圖②.請根據(jù)相關(guān)信息,解答下列問題:

(1)本次接受調(diào)查的跳水運動員人數(shù)為 , 圖①中m的值為;
(2)求統(tǒng)計的這組跳水運動員年齡數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,點M從點C出發(fā)沿CB方向以1cm/s的速度勻速運動,到達(dá)點B停止運動,在點M的運動過程中,過點M作直線MN交AC于點N,且保持∠NMC=45°,再過點N作AC的垂線交AB于點F,連接MF,將△MNF關(guān)于直線NF對稱后得到△ENF,已知AC=8cm,BC=4cm,設(shè)點M運動時間為t(s),△ENF與△ANF重疊部分的面積為y(cm2).

(1)在點M的運動過程中,能否使得四邊形MNEF為正方形?如果能,求出相應(yīng)的t值;如果不能,說明理由;
(2)求y關(guān)于t的函數(shù)解析式及相應(yīng)t的取值范圍;
(3)當(dāng)y取最大值時,求sin∠NEF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是線段BC上的一個動點,以AD為直徑畫⊙O分別交AB,AC于E,F(xiàn),連接EF,則線段EF長度的最小值為

查看答案和解析>>

同步練習(xí)冊答案