如圖,已知拋物線(xiàn)y=-x2+2x+3交軸于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C
(1)求點(diǎn)A、B、C的坐標(biāo);
(2)若點(diǎn)M為拋物線(xiàn)的頂點(diǎn),連接BC、CM、BM,求△BCM的面積;
(3)連接AC,在軸上是否存在點(diǎn)P,使△ACP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)-x2+2x+3=0,解得x1=3、x2=-1,即點(diǎn)A(-1,0),B(3,0),根據(jù)拋物線(xiàn)y=-x2+2x+3交y軸于點(diǎn)C,可知當(dāng)x=0時(shí),y=3,所以C(0,3)
(2)拋物線(xiàn)y=-x2+2x+3的點(diǎn)頂為M,根據(jù)頂點(diǎn)公式可知M(1,4),過(guò)點(diǎn)M作ME⊥AB于E,則ME=4,OE=1,BE=2,OC=3,所以S△BCM=S四邊形COBM-S△BOC=3
(3)分情況討論,共有4個(gè)點(diǎn).
(1)以AC為腰:
①當(dāng)以點(diǎn)A為圓心,AC長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)P1,p2(p1在p2的右側(cè))
可知P1,0)P2(-,0),交y軸于一點(diǎn)p5;②以點(diǎn)C為圓心,AC為半徑畫(huà)弧交x軸于點(diǎn)P3,點(diǎn)P3與點(diǎn)A關(guān)于y軸對(duì)稱(chēng),則點(diǎn)P3坐標(biāo)為(1,0),交y軸于兩點(diǎn)p6,p7
(2)以AC為底邊:作AC的垂直平分線(xiàn)交x軸于點(diǎn)p4垂足為F,利用△AOC∽△AFP4可求AP4=5,OP4=5-1=4,所以P4(4,0).
解答:解:(1)∵拋物線(xiàn)y=-x2+2x+3交x軸于A,B兩點(diǎn)
∴-x2+2x+3=0,
解得x1=3,x2=-1
∴點(diǎn)A(-1,0),B(3,0)
又∵拋物線(xiàn)y=-x2+2x+3交y軸于點(diǎn)C,
∴點(diǎn)C(0,3)

(2)∵拋物線(xiàn)y=-x2+2x+3的頂點(diǎn)為M
∴x==1
y=
∴M(1,4)
過(guò)點(diǎn)M作ME⊥AB于E,則ME=4,OE=1,
∴BE=OB-OE=3-1=2,OC=3
∴S△BCM=S△△BOC=3.

(3)存在點(diǎn)P
1)以AC為腰:
①當(dāng)以點(diǎn)A為圓心,AC長(zhǎng)為半徑畫(huà)弧交x軸于點(diǎn)P1,p2(p1在p2的右側(cè))
AC==,
∴P1O=,P2O=
∴P1,0)P2(-,0)
交y軸于p5與C點(diǎn)關(guān)于x軸對(duì)稱(chēng),坐標(biāo)為:(0,-3)
②以點(diǎn)C為圓心,AC為半徑畫(huà)弧交x軸于點(diǎn)P3
∴點(diǎn)P3與點(diǎn)A關(guān)于y軸對(duì)稱(chēng),則點(diǎn)P3坐標(biāo)為(1,0),
交y軸于點(diǎn)p6,p7兩點(diǎn),p6(0,3-),p7(0,3+
2)以AC為底邊:作AC的垂直平分線(xiàn)交x軸于點(diǎn)p4垂足為F,則AF=
∵∠AFP4=∠AOC=90°
∠CAO=∠P4AF
∴△AOC∽△AFP4

=
∴AP4=5,
∴OP4=5-1=4,
∴P4(4,0)
∴點(diǎn)P的坐標(biāo)為:P1,0)P2(-,0)P3(1,0),P4(4,0),p5(0,-3),p6(0,-3),p7(0,3+).
點(diǎn)評(píng):本題是二次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有拋物線(xiàn)的頂點(diǎn)公式和三角形的面積求法.在求有關(guān)動(dòng)點(diǎn)問(wèn)題時(shí)要注意分析題意分情況討論結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)與x軸交于A(-1,0)、B(4,0)兩點(diǎn),與y軸交于點(diǎn)精英家教網(wǎng)C(0,3).
(1)求拋物線(xiàn)的解析式;
(2)求直線(xiàn)BC的函數(shù)解析式;
(3)在拋物線(xiàn)上,是否存在一點(diǎn)P,使△PAB的面積等于△ABC的面積,若存在,求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
(4)點(diǎn)Q是直線(xiàn)BC上的一個(gè)動(dòng)點(diǎn),若△QOB為等腰三角形,請(qǐng)寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo).(可直接寫(xiě)出結(jié)果)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為x=1,且拋物線(xiàn)經(jīng)過(guò)A(-1,0)精英家教網(wǎng)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)在拋物線(xiàn)的對(duì)稱(chēng)軸x=1上求一點(diǎn)M,使點(diǎn)M到點(diǎn)A的距離與到點(diǎn)C的距離之和最小,并求出此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•衡陽(yáng))如圖,已知拋物線(xiàn)經(jīng)過(guò)A(1,0),B(0,3)兩點(diǎn),對(duì)稱(chēng)軸是x=-1.
(1)求拋物線(xiàn)對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)動(dòng)點(diǎn)Q從點(diǎn)O出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度在線(xiàn)段OA上運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)M從O點(diǎn)出發(fā)以每秒3個(gè)單位長(zhǎng)度的速度在線(xiàn)段OB上運(yùn)動(dòng),過(guò)點(diǎn)Q作x軸的垂線(xiàn)交線(xiàn)段AB于點(diǎn)N,交拋物線(xiàn)于點(diǎn)P,設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為何值時(shí),四邊形OMPQ為矩形;
②△AON能否為等腰三角形?若能,求出t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y=ax2+bx+c(a≠0)的對(duì)稱(chēng)軸為直線(xiàn)x=1,且拋物線(xiàn)經(jīng)過(guò)A(-1,0)、C(0,-3)兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求這條拋物線(xiàn)所對(duì)應(yīng)的函數(shù)關(guān)系式;
(2)點(diǎn)P是拋物線(xiàn)對(duì)稱(chēng)軸上一點(diǎn),若△PAB∽△OBC,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知拋物線(xiàn)y=ax2+bx+c的頂點(diǎn)是(-1,-4),且與x軸交于A、B(1,0)兩點(diǎn),交y軸于點(diǎn)C;
(1)求此拋物線(xiàn)的解析式;
(2)①當(dāng)x的取值范圍滿(mǎn)足條件
-2<x<0
-2<x<0
時(shí),y<-3;
     ②若D(m,y1),E(2,y2)是拋物線(xiàn)上兩點(diǎn),且y1>y2,求實(shí)數(shù)m的取值范圍;
(3)直線(xiàn)x=t平行于y軸,分別交線(xiàn)段AC于點(diǎn)M、交拋物線(xiàn)于點(diǎn)N,求線(xiàn)段MN的長(zhǎng)度的最大值;
(4)若以?huà)佄锞(xiàn)上的點(diǎn)P為圓心作圓與x軸相切時(shí),正好也與y軸相切,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案