【題目】在△ABC中,AB=AC=5,cos∠ABC=,將△ABC繞點C順時針旋轉(zhuǎn),得到△A1B1C.
(1)如圖①,當(dāng)點B1在線段BA延長線上時.①求證:BB1∥CA1;②求△AB1C的面積;
(2)如圖②,點E是BC邊的中點,點F為線段AB上的動點,在△ABC繞點C順時針旋轉(zhuǎn)過程中,點F的對應(yīng)點是F1,求線段EF1長度的最大值與最小值的差.
【答案】(1)①見試題解析;②(3).
【解析】
試題分析:(1)①根據(jù)旋轉(zhuǎn)的性質(zhì)和平行線的性質(zhì)證明;
②過A作AF⊥BC于F,過C作CE⊥AB于E,根據(jù)三角函數(shù)和三角形的面積公式解答;
(2)過C作CF⊥AB于F,以C為圓心CF為半徑畫圓交BC于F1,和以C為圓心BC為半徑畫圓交BC的延長線于F1,得出最大和最小值解答即可.
試題解析:(1)①證明:∵AB=AC,B1C=BC,∴∠AB1C=∠B,∠B=∠ACB,
∵∠AB1C=∠ACB(旋轉(zhuǎn)角相等),∴∠B1CA1=∠AB1C,∴BB1∥CA1;
②過A作AF⊥BC于F,過C作CE⊥AB于E,如圖①:
∵AB=AC,AF⊥BC,∴BF=CF,∵cos∠ABC=,AB=5,∴BF=3,∴BC=6,
∴B1C=BC=6,∵CE⊥AB,∴BE=B1E=×6=,
∴BB1=,CE=×6=,∴AB1=-5=,
∴△AB1C的面積為:;
(2)如圖2,過C作CF⊥AB于F,以C為圓心CF為半徑畫圓交BC于F1,EF1有最小值,
此時在Rt△BFC中,CF=,∴CF1=,
∴EF1的最小值為-3=;
如圖,以C為圓心BC為半徑畫圓交BC的延長線于F1,EF1有最大值;
此時EF1=EC+CF1=3+6=9,
∴線段EF1的最大值與最小值的差為9-=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩車分別從相距480km的A、B兩地相向而行,乙車比甲車先出發(fā)1小時,并以各自的速度勻速行駛,途徑C地,甲車到達(dá)C地停留1小時,因有事按原路原速返回A地.乙車從B地直達(dá)A地,兩車同時到達(dá)A地.甲、乙兩車距各自出發(fā)地的路程y(千米)與甲車出發(fā)所用的時間x(小時)的關(guān)系如圖,結(jié)合圖象信息解答下列問題:
(1)乙車的速度是 千米/時,t= 小時;
(2)求甲車距它出發(fā)地的路程y與它出發(fā)的時間x的函數(shù)關(guān)系式,并寫出自變量的取值范圍;
(3)直接寫出乙車出發(fā)多長時間兩車相距120千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】籠中有x只雞y只兔,共有36只腳,能表示題中數(shù)量關(guān)系的方程是( 。
A.x+y=18
B.x+y=36
C.4x+2y=36
D.2x+4y=36
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各組數(shù)據(jù)中能作為直角三角形的三邊長的是( )
A. ,, B. 1,1, C. 4,5,6 D. 1,,2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】天塔是天津市的標(biāo)志性建筑之一,某校數(shù)學(xué)興趣小組要測量天塔的高度,如圖,他們在點A處測得天塔最高點C的仰角為45°,再往天塔方向前進至點B處測得最高點C的仰角為54°,AB=112m,根據(jù)這個興趣小組測得的數(shù)據(jù),計算天塔的高度CD(tan36°≈0.73,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】作為世界文化遺產(chǎn)的長城,其總長大約為6700000m.將6700000用科學(xué)記數(shù)法表示為( 。
A. 6.7×105 B. 6.7×106 C. 0.67×107 D. 67×108
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com