【題目】兩個相似三角形,他們的周長分別是36和12.周長較大的三角形的最大邊為15,周長較小的三角形的最小邊為3,則周長較大的三角形的面積是( 。

A. 52 B. 54 C. 56 D. 58

【答案】B

【解析】

根據(jù)已知先求得兩相似三角形的相似比,然后根據(jù)相似比可求得較大的三角形的三邊的長,根據(jù)其邊長判定三角形為直角三角形,從而不難求得其面積.

解:兩相似三角形的周長分別是3612
相似比為3:1
周長較大的三角形的最大邊為15,周長較小的三角形的最小邊為3
周長較大的三角形的最小邊為9,周長較小的三角形的最大邊為5
周長較大的三角形的第三條邊為12
兩個三角形均為直角三角形
周長較大的三角形的面積=12×9×=54
故選B.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=x2+mxx軸的負半軸于點A.點By軸正半軸上一點,點A關(guān)于點B的對稱點A′恰好落在拋物線上.過點A′x軸的平行線交拋物線于另一點C.若點A′的橫坐標為1,則A′C的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,把n個邊長為1的正方形拼接成一排,求得tanBA1C=1,tanBA2C=,tanBA3C=,計算tanBA4C=_____,…按此規(guī)律,寫出tanBAnC=_____(用含n的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義:對于給定的一個二次函數(shù),其圖象沿x軸翻折后,得到的圖象所對應(yīng)的二次函數(shù)稱為原二次函數(shù)的橫翻函數(shù).

(1)直接寫出二次函數(shù)y=2x2的橫翻函數(shù)的表達式.

(2)已知二次函數(shù)yx2+bx+c的圖象經(jīng)過點A(﹣3,1)、B(2,6).

①求bc的值.

②求二次函數(shù)yx2+bx+c的橫翻函數(shù)的頂點坐標.

③若將二次函數(shù)yx2+bx+c的圖象位于A、B兩點間的部分(含A、B兩點)記為G,則當二次函數(shù)y=﹣x2bxc+mG有且只有一個交點時,直接寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ACB=90°,E為BC上一點,以CE為直徑作O,AB與O相切于點D,連接CD,若BE=OE=2.

(1)求證:A=2DCB;

(2)求圖中陰影部分的面積(結(jié)果保留π和根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC和DEC的面積相等,點E在BC邊上,DEAB交AC于點F,AB=12,EF=9,則DF的長是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關(guān)于x的方程(a+2)x2﹣2ax+a=0有兩個不相等的實數(shù)根x1和x2, 拋物線y=x2﹣(2a+1)x+2a﹣5與x軸的兩個交點分別為位于點(2,0)的兩旁,若|x1|+|x2|=2,則a的值為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,點DBC的中點,點EF分別在線段AD及其延長線上,且DE=DF.給出下列條件:

①BE⊥EC;②BF∥CE;③AB=AC;

從中選擇一個條件使四邊形BECF是菱形,你認為這個條件是 (只填寫序號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】假設(shè),企業(yè)還貸款,應(yīng)每年一還,還本息,若第一年沒還,則第一年的本息作為第二年的貸款本金計算. 華泰公司和宜興公司是分別擁有96名和100名工人的小型企業(yè),為了緩解下崗人員再就業(yè)的社會問題, 兩企業(yè)20171月都吸收了部分下崗人員,國家對吸收下崗人員的企業(yè)貸款給予優(yōu)惠,同時按季度(一年四個季度給予企業(yè)補助,每季度補助費為:貸款總數(shù)×(吸收再就業(yè)人數(shù)÷企業(yè)原有人數(shù))÷25 ,按兩年計。華泰公司吸收了12名下崗人員,得到兩年期的貸款和補助費共62.4萬元資金宜興公司也吸收了12名下崗人員,但因貸款少,得到的補助費比華泰公司的少20%,。

(1)20171月華泰公司得到的貸款是多少萬元?

(2)20171月宜興公司得到的貸款是多少萬元?

(3)假設(shè)兩公司第一年都沒還一分錢貸款和利息,而是兩年后20191月才還, 宜興公司歸還貸款及利息比華泰公司少12.1萬元,求國家對吸收下崗人員的企業(yè)貸款年利率.

查看答案和解析>>

同步練習冊答案