【題目】在平面直角坐標(biāo)系點(diǎn),將點(diǎn)A向右平移6個(gè)單位長(zhǎng)度,得到點(diǎn)B.

(1)直接寫(xiě)出點(diǎn)B的坐標(biāo);

(2)若拋物線(xiàn)y=-x2+bx+c經(jīng)過(guò)點(diǎn)A,B,求拋物線(xiàn)的表達(dá)式;

(3)若拋物線(xiàn)y=-x2+bx+c的頂點(diǎn)在直線(xiàn)y=x+2上移動(dòng),當(dāng)拋物線(xiàn)與線(xiàn)段AB有且只有一個(gè)公共點(diǎn)時(shí),求拋物線(xiàn)頂點(diǎn)橫坐標(biāo)的取值范圍.

【答案】(1);(2)拋物線(xiàn)表達(dá)式為;(3)

【解析】

1)根據(jù)點(diǎn)的平移規(guī)律可得點(diǎn)B坐標(biāo);

2)根據(jù)A、B兩點(diǎn)坐標(biāo),利用待定系數(shù)法可求得解析式;

3)由頂點(diǎn)在直線(xiàn)l上可設(shè)頂點(diǎn)坐標(biāo)為(t,t+2),繼而可得拋物線(xiàn)解析式為y=﹣(xt2+t+2,根據(jù)拋物線(xiàn)與線(xiàn)段AB有一個(gè)公共點(diǎn),考慮拋物線(xiàn)過(guò)點(diǎn)A或點(diǎn)B臨界情況可得t的范圍.

(1)根據(jù)平移的性質(zhì),可得:;

(2) ∵拋物線(xiàn)過(guò)點(diǎn),∴,解得:,∴拋物線(xiàn)表達(dá)式為;

(3)∵拋物線(xiàn)頂點(diǎn)在直線(xiàn) ,∴拋物線(xiàn)頂點(diǎn)坐標(biāo)為 ,∴拋物線(xiàn)表達(dá)式可化為

代入表達(dá)式可得:

解得:

代入表達(dá)式可得

解得:

綜上可知:的取值范圍時(shí)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,CDAB,ADBC.已知A(2,0),B(60),D(03),函數(shù)y(x0)的圖象G經(jīng)過(guò)點(diǎn)C

(1)求點(diǎn)C的坐標(biāo)和函數(shù)y(x0)的表達(dá)式;

(2)將四邊形ABCD向上平移2個(gè)單位得到四邊形A'B'C'D',問(wèn)點(diǎn)B'是否落在圖象G上?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是由邊長(zhǎng)為1的小正方形組成的8×4網(wǎng)格,每個(gè)小正方形的頂點(diǎn)叫做格點(diǎn),點(diǎn)A,B,C,D均在格點(diǎn)上,在網(wǎng)格中將點(diǎn)D按下列步驟移動(dòng):

第一步:點(diǎn)D繞點(diǎn)A順時(shí)針旋轉(zhuǎn)180°得到點(diǎn)D1;

第二步:點(diǎn)D1繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到點(diǎn)D2;

第三步:點(diǎn)D2繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°回到點(diǎn)D.

(1)請(qǐng)用圓規(guī)畫(huà)出點(diǎn)D→D1→D2→D經(jīng)過(guò)的路徑;

(2)所畫(huà)圖形是什么對(duì)稱(chēng)圖形;

(3)求所畫(huà)圖形的周長(zhǎng)(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某數(shù)學(xué)興趣小組為測(cè)量一棵古樹(shù)BH和教學(xué)樓CG的高,先在A處用高1.5米的測(cè)角儀測(cè)得古樹(shù)頂端H的仰角∠HDE為45°,此時(shí)教學(xué)樓頂端G恰好在視線(xiàn)DH上,再向前走7米到達(dá)B處,又測(cè)得教學(xué)樓頂端G的仰角∠GEF為60°,點(diǎn)A、B、C三點(diǎn)在同一水平線(xiàn)上.

(1)計(jì)算古樹(shù)BH的高;

(2)計(jì)算教學(xué)樓CG的高.(參考數(shù)據(jù):≈14,≈1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小西“過(guò)直線(xiàn)外一點(diǎn)作這條直線(xiàn)的垂線(xiàn)”的尺規(guī)作圖過(guò)程.

已知:直線(xiàn)l及直線(xiàn)l外一點(diǎn)P.

求作:直線(xiàn)PQ,使得PQl.

做法:如圖,

①在直線(xiàn)l的異側(cè)取一點(diǎn)K,以點(diǎn)P為圓心,PK長(zhǎng)為半徑畫(huà)弧,交直線(xiàn)l于點(diǎn)A,B

②分別以點(diǎn)A,B為圓心,大于AB的同樣長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)Q(P點(diǎn)不重合);

③作直線(xiàn)PQ,則直線(xiàn)PQ就是所求作的直線(xiàn).

根據(jù)小西設(shè)計(jì)的尺規(guī)作圖過(guò)程,

(1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

(2)完成下面的證明.

證明:∵PA= ,QA= ,

PQl( )(填推理的依據(jù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線(xiàn)y=ax2-4x+c(a≠0)與反比例函數(shù)y=的圖象相交于B點(diǎn),且B點(diǎn)的橫坐標(biāo)為3,拋物線(xiàn)與y軸交于點(diǎn)C(0,6),A是拋物線(xiàn)y=ax2-4x+c的頂點(diǎn),P點(diǎn)是x軸上一動(dòng)點(diǎn),當(dāng)PA+PB最小時(shí),P點(diǎn)的坐標(biāo)為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下面是小明設(shè)計(jì)的“作平行四邊形的高”的尺規(guī)作圖過(guò)程

已知:平行四邊形ABCD.

求作:,垂足為點(diǎn)E.

作法:如圖,

①分別以點(diǎn)A和點(diǎn)B為圓心,大于的長(zhǎng)為半徑作弧,兩弧相交于P,Q兩點(diǎn);

②作直線(xiàn)PQ,交AB于點(diǎn)O;

③以點(diǎn)O為圓心,OA長(zhǎng)為半徑做圓,交線(xiàn)段BC于點(diǎn)E;

④連接AE.

所以線(xiàn)段AE就是所求作的高.

根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過(guò)程

⑴使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

⑵完成下面的證明

證明:AP=BP, AQ= ,

PQ為線(xiàn)段AB的垂直平分線(xiàn).

O為AB中點(diǎn).

AB為直徑,⊙O與線(xiàn)段BC交于點(diǎn)E,

.( )(填推理的依據(jù))

.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】有大小兩種貨車(chē),3輛大貨車(chē)與4輛小貨車(chē)一次可以運(yùn)貨18噸,2輛大貨車(chē)與6輛小貨車(chē)一次可以運(yùn)貨17.

(1)請(qǐng)問(wèn)1輛大貨車(chē)和1輛小貨車(chē)一次可以分別運(yùn)貨多少?lài)崳?/span>

(2)目前有33噸貨物需要運(yùn)輸,貨運(yùn)公司擬安排大小貨車(chē)共計(jì)10輛,全部貨物一次運(yùn)完,其中每輛大貨車(chē)一次運(yùn)費(fèi)花費(fèi)130元,每輛小貨車(chē)一次運(yùn)貨花費(fèi)100元,請(qǐng)問(wèn)貨運(yùn)公司應(yīng)如何安排車(chē)輛最節(jié)省費(fèi)用?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】8分)如圖,AC是O的直徑,OB是O的半徑,PA切O于點(diǎn)A,PB與AC的延長(zhǎng)線(xiàn)交于點(diǎn)M,COB=APB.

(1)求證:PB是O的切線(xiàn);

(2)當(dāng)OB=3,PA=6時(shí),求MB,MC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案