【題目】電腦病毒傳播快,如果一臺電腦被感染,經(jīng)過兩輪感染后就會有81臺電腦被感染,若每輪感染中平均一臺電腦會感染x臺電腦,下列方程正確的是( )
A.x(x+1)=81
B.1+x+x2=81
C.1+x+x(x+1)=81
D.1+(x+1)2=81

【答案】C
【解析】解:設(shè)每輪感染中平均一臺電腦會感染x臺電腦.
根據(jù)題意,得:1+x+x(1+x)=81,
故選:C.
首先設(shè)每輪感染中平均一臺電腦會感染x臺電腦.則經(jīng)過一輪感染,1臺電腦感染給了x臺電腦,這(x+1)臺電腦又感染給了x(1+x)臺電腦.利用等量關(guān)系:經(jīng)過兩輪感染后就會有81臺電腦被感染得出即可.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,DE是過點A的直線,BD⊥DE于D,CE⊥DE于E.
(1)若BC在DE的同側(cè)(如圖1)且AD=CE,請寫出:BA和AC的位置關(guān)系 . (不必證明)
(2)若BC在DE的兩側(cè)(如圖2)其他條件不變,請問(1)中AB與AC的位置關(guān)系還成立嗎?若成立,寫出證明過程;若不成立,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OCDE的三個頂點分別是C(3,0),D(3,4),E(0,4).點A在DE上,以A為頂點的拋物線過點C,且對稱軸x=1交x軸于點B.連接EC,AC.點P,Q為動點,設(shè)運動時間為t秒.

(1)填空:點A坐標(biāo)為 ;拋物線的解析式為

(2)在圖1中,若點P在線段OC上從點O向點C以1個單位/秒的速度運動,同時,點Q在線段CE上從點C向點E以2個單位/秒的速度運動,當(dāng)一個點到達(dá)終點時,另一個點隨之停止運動.當(dāng)t為何值時,△PCQ為直角三角形?

(3)在圖2中,若點P在對稱軸上從點A開始向點B以1個單位/秒的速度運動,過點P做PF⊥AB,交AC于點F,過點F作FG⊥AD于點G,交拋物線于點Q,連接AQ,CQ.當(dāng)t為何值時,△ACQ的面積最大?最大值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示為某汽車行駛的路程S(km)與時間t(min)的函數(shù)關(guān)系圖,觀察圖中所提供的信息解答下列問題:

(1)汽車在前9分鐘內(nèi)的平均速度是多少?
(2)汽車中途停了多長時間?
(3)當(dāng)16≤t≤30時,求S與t的函數(shù)關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】平行四邊形ABCD中,AE平分∠BAD交BC與點E,且將BC分成4cm和6cm兩部分,則平行四邊形ABCD的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“神十”圓滿完成載人航天飛行任務(wù)后,專家將對返回艙零部件進(jìn)行檢查,應(yīng)采取的合理的調(diào)查方式是____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:-3x3·(5x2-1)=____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若不等式ax-2>0的解集為x<-2,求關(guān)于y的方程ay+2=0的解

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A. 平移改變圖形的形狀

B. 平移改變圖形的大小

C. 平移改變物體的形狀和大小

D. 平移不改變物體的形狀和大小

查看答案和解析>>

同步練習(xí)冊答案