如圖,AE、OB、OC分別平分∠BAC、∠ABC、∠ACB,OD⊥BC,求證:∠1=∠2.
證明:∵AE、OB、OC分別平分∠BAC、∠ABC、∠ACB,
∴∠1=∠ABC+∠BAC=(180°﹣∠ACB)=90°﹣∠ACB,
∠2=90°﹣∠ACB,
∴∠1=∠2。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標系中,矩形AOBC在第一象限內(nèi),E是邊OB上的動點(不包括端點),作∠AEF=90°,使EF交矩形的外角平分線BF于點F,設(shè)C(m,n).
(1)若m=n時,如圖,求證:EF=AE;
(2)若m≠n時,如圖,試問邊OB上是否還存在點E,使得EF=AE?若存在,請求出點E的坐標;若不存在,請說明理由.
(3)若m=tn(t>1)時,試探究點E在邊OB的何處時,使得EF=(t+1)AE成立?并求出點E的坐標.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AE、OB、OC分別平分∠BAC、∠ABC、∠ACB,OD⊥BC,求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•杭州)如圖,AE切⊙O于點E,AT交⊙O于點M,N,線段OE交AT于點C,OB⊥AT于點B,已知∠EAT=30°,AE=3
3
,MN=2
22

(1)求∠COB的度數(shù);
(2)求⊙O的半徑R;
(3)點F在⊙O上(
FME
是劣。,且EF=5,把△OBC經(jīng)過平移、旋轉(zhuǎn)和相似變換后,使它的兩個頂點分別與點E,F(xiàn)重合.在EF的同一側(cè),這樣的三角形共有多少個?你能在其中找出另一個頂點在⊙O上的三角形嗎?請在圖中畫出這個三角形,并求出這個三角形與△OBC的周長之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,AE、OB、OC分別平分∠BAC、∠ABC、∠ACB,OD⊥BC,求證:∠1=∠2.

查看答案和解析>>

同步練習(xí)冊答案