【題目】已知關于x的一元二次方程x2+(k﹣5)x+1﹣k=0,其中k為常數(shù).
(1)求證:無論k為何值,方程總有兩個不相等實數(shù)根;
(2)已知函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經過第三象限,求k的取值范圍;
(3)若原方程的一個根大于3,另一個根小于3,求k的最大整數(shù)值.
【答案】
(1)證明:∵△=(k﹣5)2﹣4(1﹣k)=k2﹣6k+21=(k﹣3)2+12>0,
∴無論k為何值,方程總有兩個不相等實數(shù)根
(2)解:∵二次函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經過第三象限,
∵二次項系數(shù)a=1,
∴拋物線開口方向向上,
∵△=(k﹣3)2+12>0,
∴拋物線與x軸有兩個交點,
設拋物線與x軸的交點的橫坐標分別為x1,x2,
∴x1+x2=5﹣k>0,x1x2=1﹣k>0,
解得k<1,
即k的取值范圍是k<1
(3)解:設方程的兩個根分別是x1,x2,
根據題意,得(x1﹣3)(x2﹣3)<0,
即x1x2﹣3(x1+x2)+9<0,
又x1+x2=5﹣k,x1x2=1﹣k,
代入得,1﹣k﹣3(5﹣k)+9<0,
解得k< .
則k的最大整數(shù)值為2
【解析】(1)求出方程的判別式△的值,利用配方法得出△>0,根據判別式的意義即可證明;(2)由于二次函數(shù)y=x2+(k﹣5)x+1﹣k的圖象不經過第三象限,又△=(k﹣5)2﹣4(1﹣k)=(k﹣3)2+12>0,所以拋物線的頂點在x軸的下方經過一、二、四象限,根據二次項系數(shù)知道拋物線開口向上,由此可以得出關于k的不等式組,解不等式組即可求解;(3)設方程的兩個根分別是x1 , x2 , 根據題意得(x1﹣3)(x2﹣3)<0,根據一元二次方程根與系數(shù)的關系求得k的取值范圍,再進一步求出k的最大整數(shù)值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,AB=10cm,AC=8cm,BC=6cm.如果點P由B出發(fā)沿BA向點A勻速運動,同時點Q由A出發(fā)沿AC向點C勻速運動,它們的速度均為2cm/s.連接PQ,設運動的時間為t(單位:s)(0≤t≤4).
(1)當t為何值時,PQ∥BC.
(2)設△AQP的面積為S(單位:cm2),當t為何值時,S取得最大值,并求出最大值.
(3)是否存在某時刻t,使線段PQ恰好把△ABC的面積平分?若存在,求出此時t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海中有一小島A,它周圍8海里內有暗礁,漁船跟蹤魚群由西向東航行,在B點測得小島A在北偏東60°方向上,航行12海里到達D點,這時測得小島A在北偏東30°方向上.如果漁船不改變航線繼續(xù)向東航行,有沒有觸礁的危險?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】規(guī)定:如果關于x的一元二次方程ax2+bx+c=0(a≠0)有兩個實數(shù)根,且其中一個根是另一個根的2倍,則稱這樣的方程為“倍根方程”.現(xiàn)有下列結論: ①方程x2+2x﹣8=0是倍根方程;
②若關于x的方程x2+ax+2=0是倍根方程,則a=±3;
③若關于x的方程ax2﹣6ax+c=0(a≠0)是倍根方程,則拋物線y=ax2﹣6ax+c與x軸的公共點的坐標是(2,0)和(4,0);
④若點(m,n)在反比例函數(shù)y= 的圖象上,則關于x的方程mx2+5x+n=0是倍根方程.
上述結論中正確的有( )
A.①②
B.③④
C.②③
D.②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關系圖象,其中M為曲線部分的最低點,則△ABC的面積是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.
(1)觀察猜想
圖1中,線段PM與PN的數(shù)量關系是 , 位置關系是;
(2)探究證明
把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;
(3)拓展延伸
把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=kx+b,y= ,b、k為整數(shù)且|bk|=1.
(1)討論b,k的取值.
(2)分別畫出兩種函數(shù)的所有圖象.(不需列表)
(3)求y=kx+b與y= 的交點個數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸交于點C(0,4).
(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MN∥y軸交直線BC于點N,當 MN的值最大時,求△BMN的周長.
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1 , △ABN的面積為S2 , 且S1=4S2 , 求點P的坐標.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com