【題目】如圖,∠BAC=90°,AD⊥BC,垂足為點(diǎn) D.下列說法中:①∠B的余角只有∠BAD;②∠B=∠C;③線段 AB 的長(zhǎng)度表示點(diǎn) B 到直線 AC 的距離;④AB·AC=BC·AD;一定正確的有( )

A. 1 個(gè) B. 2 個(gè) C. 3 個(gè) D. 4 個(gè)

【答案】A

【解析】

根據(jù)互為余角的定義,點(diǎn)的線的距離就是點(diǎn)到線的垂線段的長(zhǎng)度及相似三角形的判定解答即可.

B的余角有∠BAD和∠C, ①錯(cuò)誤; ∵∠BAC=90°, ∴∠B+C=90°, ②錯(cuò)誤; 點(diǎn) B 到直線 AC 的距離是線段BA的長(zhǎng)度, ③錯(cuò)誤; ∵∠B+C=90°, C+CAD=90°, ∴∠B=CAD, ∵∠BAC=ADC=90°, ∴△ABC∽△DAC, , AB·AC=BC·AD,④正確.故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線ABDF,D+B=180°,

1)求證:DEBC

2)如果∠AMD=75°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象交y軸于點(diǎn)A,交x軸于點(diǎn)B,點(diǎn)F在射線BA上,過點(diǎn)Fx軸的垂線,點(diǎn)D為垂足,

⑴若OD=6,求F點(diǎn)的坐標(biāo);

(2)OD=12,M在線段FD上,M的縱坐標(biāo)為m,連接BM,用含有m的代數(shù)式表示BMF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB∥CD∥EF,BC∥AD,AC平分∠BAD且與EF交于點(diǎn)O,那么圖中與∠AOE相等的角有(  )

A. 3個(gè) B. 4個(gè) C. 5個(gè) D. 6個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列圖形,它是把一個(gè)三角形分別連接這個(gè)三角形三邊的中點(diǎn),構(gòu)成4個(gè)小三角形,挖去中間的一個(gè)小三角形(如圖1);對(duì)剩下的三個(gè)小三角形再分別重復(fù)以上做法,…將這種做法繼續(xù)下去(如圖2,圖3…),則圖6中挖去三角形的個(gè)數(shù)為(
A.121
B.362
C.364
D.729

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)在平時(shí)的練習(xí)中,遇到下面一道題目:

如圖,∠AOC=90°,OE 平分∠BOC,OD平分∠AOB.

①若∠BOC=60°,求∠DOE 度數(shù);

②若∠BOC=α(0<α<90°),其他條件不變,求∠DOE 的度數(shù).

(1)下面是某同學(xué)對(duì)①問的部分解答過程,請(qǐng)你補(bǔ)充完整.

∵OE 平分∠BOC,∠BOC=60°

∴∠BOE= . (角平分線的定義)

∵∠AOC=90°,∠BOC=60°

,

∵OD 平分∠AOB,

,(角平分線的定義)

∴∠DOE= .

(注:符號(hào)∵表示因?yàn),用符?hào)∴表示所以).

(2)仿照①的解答過程,完成第②小題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形紙片ABCD中,AB=3cm,AD=5cm,折疊紙片使B點(diǎn)落在邊AD上的E處,折痕為PQ,過點(diǎn)E作EF∥AB交PQ于F,連接BF.

(1)求證:四邊形BFEP為菱形;
(2)當(dāng)點(diǎn)E在AD邊上移動(dòng)時(shí),折痕的端點(diǎn)P、Q也隨之移動(dòng);
①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí)(如圖2),求菱形BFEP的邊長(zhǎng);

②若限定P、Q分別在邊BA、BC上移動(dòng),求出點(diǎn)E在邊AD上移動(dòng)的最大距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,∠ACB=90°,AD平分∠BAC,DE⊥ABE.

(1)若∠BAC=50°,求∠EDA的度數(shù);

(2)求證:直線AD是線段CE的垂直平分線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,B、C、E三點(diǎn)在同一條直線上,ACDE,AC=CE,ACD=B.

(1)求證:BC=DE

(2)若∠A=40°,求∠BCD的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案