作业宝如圖所示,四邊形ABCD是⊙O的內(nèi)接四邊形,延長BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD=________.

144°
分析:設∠BCD=3k,則∠ECD=2k,再由∠BCD+∠ECD=180°,可得出k的值,求出∠BCD,及∠ECD的度數(shù),然后得出∠A,再由圓周角定理可求出∠BOD.
解答:∵∠BCD:∠ECD=3:2,
∴可設∠BCD=3k,則∠ECD=2k,
∵∠BCD+∠ECD=180°,
∴3k+2k=180°,
解得:k=36°,
∴∠BCD=108°,∠ECD=72°,
∴∠A=72°,
∴∠BOD=144°.
故答案為:144°.
點評:本題考查了圓周角定理及圓內(nèi)接四邊形的性質(zhì),注意掌握圓內(nèi)接四邊形的對角互補;在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長線上,且DE=BF,連接FE分別交AB,CD于點H,G.
(1)觀察圖中有
2
對全等三角形;
(2)聰明的你如果還有時間,請在上圖中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請在下面的橫線上再寫出兩對與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長線的上一點,∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點.
(1)當AB∥CD而AD與BC不平行時,四邊形ABCD稱為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關(guān)系為
 

(2)當AB與CD不平行,AD與BC也不平行時,猜想EF與AB+CD的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點,連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源:新課標 讀想練同步測試 七年級數(shù)學(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點,設∠CDP=α,∠CPD=β,試說明,無論點P在BC上如何移動,總有α+β=∠B.

查看答案和解析>>

同步練習冊答案