【題目】如圖,拋物線y=ax2+bx+c(a≠0)的對(duì)稱軸為直線x=﹣2,與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,其部分圖象如圖所示則下列結(jié)論:①4a﹣b=0;②c<0;③c>3a;④4a﹣2b>at2+bt(t為實(shí)數(shù));⑤點(diǎn)(﹣,y1),(﹣,y2),()是該拋物線上的點(diǎn),則y2<y1<y3,其中,正確結(jié)論的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
【答案】C
【解析】
根據(jù)拋物線的對(duì)稱軸可判斷①;由拋物線與x軸的交點(diǎn)及拋物線的對(duì)稱性可判斷②;由x=﹣1時(shí)y>0可判斷③,由x=﹣2時(shí)函數(shù)取得最大值可判斷④;根據(jù)拋物線的開口向下且對(duì)稱軸為直線x=﹣2知圖象上離對(duì)稱軸水平距離越小函數(shù)值越大,可判斷⑤.
∵拋物線的對(duì)稱軸為直線x=﹣2,
∴4a﹣b=0,所以①正確;
∵與x軸的一個(gè)交點(diǎn)在(﹣3,0)和(﹣4,0)之間,
∴由拋物線的對(duì)稱性知,另一個(gè)交點(diǎn)在(﹣1,0)和(0,0)之間,
∴拋物線與y軸的交點(diǎn)在y軸的負(fù)半軸,即c<0,故②正確;
∵由②知,x=﹣1時(shí)y>0,且b=4a,
即a﹣b+c=a﹣4a+c=﹣3a+c>0,
所以③正確;
由函數(shù)圖象知當(dāng)x=﹣2時(shí),函數(shù)取得最大值,
∴4a﹣2b+c≥at2+bt+c,
即4a﹣2b≥at2+bt(t為實(shí)數(shù)),故④錯(cuò)誤;
∵拋物線的開口向下,且對(duì)稱軸為直線x=﹣2,
∴拋物線上離對(duì)稱軸水平距離越小,函數(shù)值越大,
∴y2>y1>y3,故⑤錯(cuò)誤;
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】現(xiàn)需了解2019年各月份中5至14日廣州市每天最低氣溫的情況:圖①是3月份的折線統(tǒng)計(jì)圖.(數(shù)據(jù)來源于114天氣網(wǎng))
(1)圖②是3月份的頻數(shù)分布直方圖,根據(jù)圖①提供的信息,補(bǔ)全圖②中的頻數(shù)分布直方圖;
(2)3月13日與10日這兩天的最低氣溫之差是 ℃;
(3)圖③是5月份的折線統(tǒng)計(jì)圖.用表示5月份的方差;用表示3月份的方差,比較大。 ;比較3月份與5月份, 月份的更穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)中學(xué)生體質(zhì)健康綜合評(píng)定成績(jī)?yōu)?/span>x分,滿分為100分,規(guī)定:85≤x≤100為A級(jí),75≤x≤85為B級(jí),60≤x≤75為C級(jí),x<60為D級(jí).現(xiàn)隨機(jī)抽取某中學(xué)部分學(xué)生的綜合評(píng)定成績(jī),整理繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)在這次調(diào)查中,一共抽取了 名學(xué)生,α= %;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)扇形統(tǒng)計(jì)圖中C級(jí)對(duì)應(yīng)的圓心角為 度;
(4)若A級(jí)由2個(gè)男生參加自主考試,B級(jí)由1個(gè)女生參加自主考試,剛好有一男一女考取名校,請(qǐng)用樹狀圖或列表法求他們的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是AB邊的中點(diǎn),沿EC對(duì)折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連接AP并延長(zhǎng)AP交CD于F點(diǎn),連接BP.
(1)求證:四邊形AECF為平行四邊形;
(2)若BC= AB,判斷△ABP的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某部門為了解工人的生產(chǎn)能力情況,進(jìn)行了抽樣調(diào)查.該部門隨機(jī)抽取了20名工人某天每人加工零件的個(gè)數(shù),數(shù)據(jù)如下:整理上面數(shù)據(jù),得到條形統(tǒng)計(jì)圖;樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)如表所示:
統(tǒng)計(jì)量 | 平均數(shù) | 眾數(shù) | 中位數(shù) |
數(shù)值 | 19.2 | m | n |
根據(jù)以上信息,解答下列問題:
(1)上表中m、n的值分別為 , ;
(2)為調(diào)動(dòng)積極性,該部門根據(jù)工人每天加工零件的個(gè)數(shù)制定了獎(jiǎng)勵(lì)標(biāo)準(zhǔn),凡達(dá)到或超過這個(gè)標(biāo)準(zhǔn)的工人將獲得獎(jiǎng)勵(lì).如果想讓60%左右的工人能獲獎(jiǎng),應(yīng)根據(jù) 來確定獎(jiǎng)勵(lì)標(biāo)準(zhǔn)比較合適(填“平均數(shù)”、“眾數(shù)”或“中位數(shù)”);
(3)該部門規(guī)定:每天加工零件的個(gè)數(shù)達(dá)到或超過21個(gè)的工人為生產(chǎn)能手若該部門有300名工人,試估計(jì)該部門生產(chǎn)能手的人數(shù);
(4)現(xiàn)決定從小王、小張、小李、小劉中選兩人參加業(yè)務(wù)能手比賽,直接寫出恰好選中小張、小李兩人的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀材料:
小明在學(xué)習(xí)二次根式后,發(fā)現(xiàn)一些含根號(hào)的式子可以寫成另一個(gè)式子的平方,如.善于思考的小明進(jìn)行了以下探索:
設(shè)(其中、、、均為整數(shù)),則有.
,.這樣小明就找到了一種把類似的式子化為平方式的方法.
請(qǐng)你仿照小明的方法探索并解決下列問題:
(1)當(dāng)、、、均為正整數(shù)時(shí),若,用含、的式子分別表示、,得: , ;
(2)利用所探索的結(jié)論,找一組正整數(shù)、、、填空: ;
(3)若,且、、均為正整數(shù),求的值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是△ABC的外接圓,AB是⊙O的直徑,點(diǎn)D是AB延長(zhǎng)線上的一點(diǎn),AE⊥DC交DC的延長(zhǎng)線于點(diǎn)E,AC平分∠DAE.
(1)DE與⊙O有何位置關(guān)系?請(qǐng)說明理由.
(2)若AB=6,CD=4,求CE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實(shí)踐
(1)(探索發(fā)現(xiàn))
在△ABC中,AC=BC,∠ACB=a,點(diǎn)D為直線BC上一動(dòng)點(diǎn)(點(diǎn)D不與點(diǎn)B,C重合),過點(diǎn)D作DF∥AC交直線AB于點(diǎn)F,將AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)a得到ED,連接BE,如圖(1),當(dāng)點(diǎn)D在線段BC上,且a=90°時(shí),試猜想:
①AF與BE之間的數(shù)量關(guān)系: ;
②∠ABE= .
(2)(拓展探究)
如圖(2),當(dāng)點(diǎn)D在線段BC上,且0°<a<90°時(shí),判斷AF與BE之間的數(shù)量關(guān)系及∠ABE的度數(shù),請(qǐng)說明理由.
(3)(解決問題)
如圖(3),在△ABC中,AC=BC,AB=4,∠ACB=a,點(diǎn)D在射線BC上,將AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)a得到ED,連接BE.當(dāng)BD=3CD時(shí),請(qǐng)直接寫出BE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在平行四邊形ABCD中,CD=2AD,BE⊥AD,點(diǎn)F為DC中點(diǎn),連接EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確的有_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com