【題目】已知下列命題:①若則②若則③對頂角相等;④等腰三角形的兩底角相等.其中原命題和逆命題均為真命題的個(gè)數(shù)是( )
A. 1B. 2C. 3D. 4
【答案】B
【解析】
先分別寫出四個(gè)命題的逆命題,然后根據(jù)絕對值的意義、不等式的性質(zhì)、對頂角的定義和等腰三角形的判定與性質(zhì)對各命題進(jìn)行判斷.寫出各個(gè)命題的逆命題后分別判斷原命題與逆命題正確與否即可得到正確的選項(xiàng).
解:若|a|=|b|,則a2=b2,的逆命題為:若a2=b2,則|a|=|b|,原命題和逆命題均為真命題;
若am2>bm2,則a>b的逆命題為:若a>b,則am2>bm2,原命題為真命題,逆命題為假命題;
對頂角相等的逆命題為相等的角為對頂角,原命題為真命題,逆命題為假命題;
等腰三角形的兩底角相等的逆命題為:有兩角相等的三角形為等腰三角形,原命題和逆命題均為真命題.
故選:B.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是小明設(shè)計(jì)的“過直線外一點(diǎn)作這條直線的平行線”的尺規(guī)作圖過程.
已知:如圖 ,直線 及直線 外一點(diǎn) .
求作:直線 ,使得 .
作法:如圖 .
①在直線 上取一點(diǎn) ,連接 ;
②作 的平分線 ;
③以點(diǎn) 為圓心, 長為半徑畫弧,交射線 于點(diǎn) ;
④作直線 .
所以直線 就是所求作的直線.根據(jù)小明設(shè)計(jì)的尺規(guī)作圖過程.
(1)使用直尺和圓規(guī),補(bǔ)全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:
平分 ,
.
,
,
,
(____________________)(填推理依據(jù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=﹣x+1與x軸,y軸分別交于B,A兩點(diǎn),動點(diǎn)P在線段AB上移動,以P為頂點(diǎn)作∠OPQ=45°交x軸于點(diǎn)Q.
(1)求點(diǎn)A和點(diǎn)B的坐標(biāo);
(2)比較∠AOP與∠BPQ的大小,說明理由.
(3)是否存在點(diǎn)P,使得△OPQ是等腰三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠B=90°,AB∥CD,M為BC邊上的一點(diǎn),且AM平分∠BAD,DM平分∠ADC.
求證:(1)AM⊥DM;
(2)M為BC的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)C,D在AB同側(cè),∠CAB=∠DBA,下列條件中不能判定△ABD≌△BAC的是( 。
A. ∠D=∠C B. BD=AC C. ∠CAD=∠DBC D. AD=BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副三角板如圖擺放,∠OAB=∠OCD=90°,∠AOB=60°,∠COD=45°,OM平分∠AOD,ON平分∠COB,則∠MON的度數(shù)為( )
A.60°B.45°C.65.5°D.52.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線l:y=mx﹣m+1(m為常數(shù),且m≠0)與坐標(biāo)軸交于A、B兩點(diǎn),若△AOB(O是原點(diǎn))的面積恰為2,則符合要求的直線l有( )
A.1條
B.2條
C.3條
D.4條
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,C(0,5),D(a,5)(a >0),A、B 在 x 軸上,∠1=∠D,求證:∠ACB+∠BED=180°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com