【題目】直線l:y=mx﹣m+1(m為常數(shù),且m≠0)與坐標軸交于A、B兩點,若△AOB(O是原點)的面積恰為2,則符合要求的直線l有( )
A.1條
B.2條
C.3條
D.4條

【答案】C
【解析】解:當x=0時,y=mx﹣m+1=1﹣m,

∴直線l與y軸的交點A的坐標為(0,1﹣m);

當y=mx﹣m+1=0時,x=1﹣

∴直線l與x軸的交點B的坐標為(1﹣ ,0).

∵△AOB(O是原點)的面積恰為2,

|1﹣m||1﹣ |=2.

當m<0時,有m2+2m+1=0,

解得:m=﹣1;

當0<m≤1時,有m2﹣6m+1=0,

解得:m=3﹣2 或m=3+2 (舍去);

當m>1時,有m2﹣6m+1=0,

解得:m=3+2 或m=3﹣2 (舍去).

∴m的值有3個,即符合要求的直線有3個.

所以答案是:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,Aab)、Bcd)、C7,0),且

1)如果a1,d2,

①求AB兩點的坐標;

②求線段ABy軸交點N的坐標,并求出AOB的面積;

2)如果b1,且AOBABC面積和為9,求a的值或取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列命題:①若②若③對頂角相等;④等腰三角形的兩底角相等.其中原命題和逆命題均為真命題的個數(shù)是(

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某家電商場計劃用9萬元從生產(chǎn)廠家購進50臺電視機,已知該廠家生產(chǎn)3種不同型號的電視機,出廠價分別為A種每臺1500元,B種每臺2100元,C種每臺2500元.

1)若家電商場同時購進兩種不同型號的電視機共50臺,用去9萬元,請你計算一下商場有哪幾種進貨方案?

2)若商場銷售一臺A種電視機可獲利150元,銷售一臺B種電視機可獲利200元,銷售一臺C種電視機可獲利250元,在同時購進兩種不同型號的電視機方案中,為了使銷售時獲利最多,應選擇哪種方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們已經(jīng)知道,有一個內(nèi)角是直角的三角形是直角三角形.其中直角所在的兩條邊叫直角邊,直角所對的邊叫斜邊(如圖①所示).數(shù)學家已發(fā)現(xiàn)在一個直角三角形中,兩個直角邊邊長的平方和等于斜邊長的平方.如果設直角三角形的兩條直角邊長度分別是,斜邊長度是,那么可以用數(shù)學語言表達:

(1)在圖②,,,則 ;

(2)觀察圖,利用面積與代數(shù)恒等式的關系,試說明的正確性.其中兩個相同的直角三角形邊AE、EB在一條直線上;

(3)如圖所示,折疊長方形ABCD的一邊AD,使點D落在BC邊的點F處,已知AB=8,BC=10,利用上面的結論求EF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)發(fā)現(xiàn)問題:如圖①平行四邊形AB、CD的對角線相交于點O,DEAC,CEBD,可知:四邊形OCED是什么形(不需要證明).

(2)類比探究:如圖②矩形ABCD的對角線相交于點O,DEAC,CEBD,四邊形OCED是什么形,請說明理由;

(3)拓展應用:如圖③,菱形ABCD的對角線相交于點O,ABC=60°,BC=4,DEACBC的延長線于點F,CEBD求四邊形ABFD的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個正三角形和一副三角板(分別含30°45°)擺放成如圖所示的位置,且ABCD.則∠1∠2__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在菱形ABCD中,對角線AC,BD相交于點O,過點CCEBD,過點DDEAC,CEDE相交于點E,若AB=10,AC=12,求四邊形CODE的周長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD中,AB6,點E在邊CD上,且CD3DE.將ADE沿AE對折至AFE,延長EF交邊BC于點G,連結AG、CF

1)求證:①ABGAFG; BGGC;

2)求FGC的面積.

查看答案和解析>>

同步練習冊答案