【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形花草園,其中一邊靠墻,另外三邊周長為30米的籬笆圍成.已知墻長為16米(如圖所示),設(shè)這個(gè)花草園垂直于墻的一邊長為x米.

(1)若花草園的面積為100平方米,求x;

(2)若平行于墻的一邊長不小于10米,這個(gè)花草園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒有,請說明理由;

【答案】110米;(2100平方米.

【解析】

1)根據(jù)題意得方程求解即可;

2)設(shè)苗圃園的面積為y,根據(jù)題意得到二次函數(shù)解析式y=x30-2x=-2x2+30x,根據(jù)二次函數(shù)的性質(zhì)求解即可.

1)根據(jù)題意知平行于墻的一邊的長為(30-2x)米,

則有:x30-2x=100,

解得:x=5x=10

030-2x≤16,

7≤x15

x=10;

2)設(shè)苗圃園的面積為y,

,

∴苗圃園的面積y有最大值,

解得:,

,

∴當(dāng)時(shí),即平行于墻的一邊長米,平方米;

當(dāng)時(shí),平方米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,利用一個(gè)直角墻角修建一個(gè)梯形儲(chǔ)料場ABCD,其中∠C120°.若新建墻BCCD總長為12m,則該梯形儲(chǔ)料場ABCD的最大面積是(

A.18m2B.m2C.m2D.m2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x+x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn),拋物線的對稱軸與直線AC交于點(diǎn)E

1)若點(diǎn)P為直線AC上方拋物線上的動(dòng)點(diǎn),連接PC,PE,當(dāng)PCE的面積SPCE最大時(shí),點(diǎn)P關(guān)于拋物線對稱軸的對稱點(diǎn)為點(diǎn)Q,此時(shí)點(diǎn)T從點(diǎn)Q開始出發(fā),沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至y軸上的點(diǎn)F處,再沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至x軸上的點(diǎn)G處,最后沿適當(dāng)?shù)穆窂竭\(yùn)動(dòng)至直線AC上的點(diǎn)H處,求滿足條件的點(diǎn)P的坐標(biāo)及QF+FG+AH的最小值.

2)將BOC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)120°,邊BO所在直線與直線AC交于點(diǎn)M,將拋物線沿射線CA方向平移個(gè)單位后,頂點(diǎn)D的對應(yīng)點(diǎn)為D′,點(diǎn)Ry軸上,點(diǎn)N在坐標(biāo)平面內(nèi),當(dāng)以點(diǎn)D′R,MN為頂點(diǎn)的四邊形是菱形時(shí),請直接寫出N點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線yax2+bx+ca≠0)的部分圖象,其頂點(diǎn)坐標(biāo)為(1,n),且與x軸的一個(gè)交點(diǎn)在點(diǎn)(3,0)和(4,0)之間,則下列結(jié)論:①b2a;②can;③拋物線另一個(gè)交點(diǎn)(m,0)在﹣2到﹣1之間;④當(dāng)x0時(shí),ax2+b+2x0;⑤一元二次方程ax2+bx+c0有兩個(gè)不相等的實(shí)數(shù)根其中正確結(jié)論的個(gè)數(shù)是(  )

A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5x軸、y軸分別交于A,C兩點(diǎn),拋物線yx2+bx+c經(jīng)過A,C兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線解析式及B點(diǎn)坐標(biāo);

2x2+bx+c5x+5的解集是   ;

3)若點(diǎn)M為拋物線上一動(dòng)點(diǎn),連接MA、MB,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),ABM面積為ABC的面積的倍,求此時(shí)點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD,動(dòng)點(diǎn)E在AC上,AF⊥AC,垂足為A,AF=AE.

(1)BF和DE有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論;

(2)在其他條件都保持不變的是情況下,當(dāng)點(diǎn)E運(yùn)動(dòng)到AC中點(diǎn)時(shí),四邊形AFBE是什么特殊四邊形?請證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),,.

1)畫出繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后的圖形,并寫出點(diǎn)的坐標(biāo);

2)將(1)中所得先向左平移4個(gè)單位,再向上平移2個(gè)單位得到,畫出,并寫出點(diǎn)的坐標(biāo);

3)若可以看作繞某點(diǎn)旋轉(zhuǎn)得來,直接寫出旋轉(zhuǎn)中心的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:⊙O的半徑為25cm,弦AB40cm,弦CD48cmABCD.求這兩條平行弦AB,CD之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線軸、軸分別相交于點(diǎn)A(-1,0)和B03),其頂點(diǎn)為D。

1)求這條拋物線的解析式;

2)畫出此拋物線;

3)若拋物線與軸的另一個(gè)交點(diǎn)為E,求ODE的面積;

4)拋物線的對稱軸上是否存在點(diǎn)P使得PAB的周長最短。若存在請求出點(diǎn)P的坐標(biāo),若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案