【題目】已知拋物線與y軸交于C點,與x軸交于A、B兩點,點A的坐標是(-1,0),O是坐標原點,且.
(1)求拋物線的函數(shù)表達式;
(2)直接寫出直線BC的函數(shù)表達式;
(3)如圖1,D為y軸的負半軸上的一點,且OD=2,以OD為邊作正方形ODEF.將正方形ODEF
以每秒1個單位的速度沿x軸的正方向移動,在運動過程中,設正方形ODEF與△OBC重疊部分的面積為s,運動的時間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關系式; ②在運動過程中,s是否存在最大值?如果存在,直接寫出這個最大值;如果不存在,請說明理由.
(4)如圖2,點P(1,k)在直線BC上,點M在x軸上,點N在拋物線上,是否存在以A、M、
N、P為頂點的平行四邊形?若存在,請直接寫出M點坐標;若不存在,請說明理由.
【答案】(1)y=x2-2x-3(2)直線BC的函數(shù)表達式為y=x-3(3)① ②當t =2秒時,S有最大值,最大值為(4)存在。M 1(-,0)M2(,0),M3(,0),M4(,0)
【解析】解:(1)∵ A(-1,0), ,∴C(0,-3)。
∵拋物線經(jīng)過A(-1,0),C(0,,3),
∴,解得。
∴拋物線的函數(shù)表達式y(tǒng)=x2-2x-3。
(2)直線BC的函數(shù)表達式為y=x-3。
(3)當正方形ODEF的頂點D運動到直線BC上時,設D點的坐標為(m,-2),
根據(jù)題意得:-2=m-3,∴m=1。
①當0<t≤1時,S1=2t;
當1<t≤2時,如圖,
O1(t,0),D1(t,-2),
G(t,t-3),H(1,-2),
∴GD1=t-1,HD1= t-1。
∴S=
。
∴s與t之間的函數(shù)關系式為
②在運動過程中,s是存在最大值:當t =2秒時,S有最大值,最大值為。
(4)存在。M 1(-,0)M2(,0),M3(,0),M4(,0)。
(1)求出點C的坐標,即可根據(jù)A,C的坐標用待定系數(shù)法求出拋物線的函數(shù)表達式。
(2)求出點B的坐標(3,0),即可由待定系數(shù)法求出直線BC的函數(shù)表達式。
(3)①分0<t≤1和1<t≤2討論即可。
②由于在0<t≤2上隨t的增大而增大,從而在運動過程中,s是存在最大值:當t =2秒時,S有最大值,最大值為。
(4)由點P(1,k)在直線BC上,可得k=-2。∴P(1,-2)。
則過點P且平行于x軸的直線N1N2和在x軸上方與x軸的距離為2的直線N3N4,與y=x2-2x-3的交點N1、N2、 N3、N4的坐標分別為N1(,-2),N2(,-2), N3(, 2),N4(, 2)。
則M1的橫坐標為-PN1加點A的橫坐標:-;
M2的橫坐標為PN2加點A的橫坐標:;
M3的橫坐標為N3的縱坐標加N3的橫坐標:;
M4的橫坐標為N4的縱坐標加N4的的橫坐標:。
綜上所述,M 1(-,0)M2(,0),M3(,0),M4(,0)。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形ABCD和正方形EFGC面積分別為64和16.
(1)請寫出點A,E,F的坐標;
(2)求S△BDF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學對“希望工程捐款活動”進行抽樣調查,得到一組學生捐款情況的數(shù)據(jù)如圖是根據(jù)這組數(shù)據(jù)繪制的統(tǒng)計圖,圖中從左到右各長方形高度之比為3:4:5:8,又知此次調查中捐15元和20元的人數(shù)共39人.
他們一共抽查了多少人?
這組數(shù)據(jù)的眾數(shù)、中位數(shù)各是多少?
若該校共有1500名學生,請你估算全校學生共捐款多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,B、C、E三點在同一條直線上,AC∥DE,AC=CE,∠ACD=∠B.
(1)求證:BC=DE
(2)若∠A=40°,求∠BCD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】南中國海是中國固有領海,我漁政船經(jīng)常在此海域執(zhí)勤巡察.一天我漁政船停在小島A北偏西37°方向的B處,觀察A島周邊海域.據(jù)測算,漁政船距A島的距離AB長為10海里.此時位于A島正西方向C處的我漁船遭到某國軍艦的襲擾,船長發(fā)現(xiàn)在其北偏東50°的方向上有我方漁政船,便發(fā)出緊急求救信號.漁政船接警后,立即沿BC航線以每小時30海里的速度前往救助,問漁政船大約需多少分鐘能到達漁船所在的C處?
(參考數(shù)據(jù):sin37°≈0.60,cos37°≈0.80,sin50°≈0.77,cos50°≈0.64,sin53°≈0.80,cos53°≈0.60,sin40°≈0.64,cos40°≈0.77)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)觀察推理:如圖①,在中,,直線過點,點在直線的同側,,垂足分別為.求證:.
(2)類比探究:如圖②,在中,,將斜邊繞點逆時針旋轉90°至,連接,求的面積.
(3)拓展提升:如圖③,在中,,點在上,且,動點從點沿射線以每秒1個單位長度的速度運動,連接,將線段繞點逆時針旋轉120°得到線段.要使點恰好落在射線上,求點運動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】山地自行車越來越受到中學生的喜愛,各種品牌相繼投放市場,某車行經(jīng)營的A型車去年銷售總額為5萬元,今年每輛銷售價比去年降低400元,若賣出的數(shù)量相同,銷售總額將比去年減少20%.
(1)今年A型車每輛售價多少元?(用列方程的方法解答)
(2)該車行計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,應如何進貨才能使這批車獲利最多?
A,B兩種型號車的進貨和銷售價格如下表:
A型車 | B型車 | |
進貨價格(元) | 1100 | 1400 |
銷售價格(元) | 今年的銷售價格 | 2000 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】作圖題:(1)在∠ABC內找一點M,使它到∠ABC的兩邊的距離相等,并且到點A、C的距離也相等.(寫出作法,保留作圖痕跡)
(2)已知如下圖,求作△ABC關于對稱軸l的軸對稱圖形△AB′C′.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知AB∥PN∥CD.
(1)試探索∠ABC,∠BCP和∠CPN之間的數(shù)量關系,并說明理由;
(2)若∠ABC=42°,∠CPN=155°,求∠BCP的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com