【題目】如圖,在矩形中,的中點,將沿折疊后得到,點在矩形內部,延長于點G

1)猜想線段有何數(shù)量關系?并證明你的結論;

2)若,,求線段的長.

【答案】1,證明見解析;(2

【解析】

1)連接GE,根據(jù)點EBC的中點以及翻折的性質可以求出BE=EF=EC,然后利用“HL”證明△GFE和△GCE全等,根據(jù)全等三角形對應邊相等即可得證;
2)設GC=x,表示出AGDG,然后在RtADG中,利用勾股定理列式進行計算即可得解.

1GF=GC.理由如下:

連接GE,


∵在矩形ABCD中,
∴∠B=C=90°,
EBC的中點,
BE=EC
∵△ABE沿AE折疊后得到△AFE,
BE=EF,∠AFE=B=EFG=90°,AF=AB=3
EF=EC,
∵在RtGFERtGCE中,

,
RtGFERtGCEHL),
GF=GC;

2)設GC=,則AG=AF+FG=,DG=
RtADG中,,即,
解得

GC的長為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若實數(shù)m、n滿足等式,且m、n恰好是等腰△ABC的兩條邊的邊長,則△ABC的周長是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=﹣2x2+bx+c圖象的頂點坐標為(3,8),該二次函數(shù)圖象的對稱軸與x軸的交點為A,M是這個二次函數(shù)圖象上的點,O是原點.
(1)不等式b+2c+8≥0是否成立?請說明理由;
(2)設S是△AMO的面積,求滿足S=9的所有點M的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).

①以原點O為對稱中心,畫出△ABC關于原點O對稱的△A1B1C1;
②將△ABC繞A點逆時針旋轉90°得到△AB2C2 , 畫出△AB2C2 , 并求出AC掃過的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,每個小正方形邊長都為1個單位長度.

①畫出將△ABC向下平移4個單位得到的△A1B1C1;
②畫出△ABC關于原點O的中心對稱圖形△A2B2C2
③畫出△A1B1C1繞著點A1順時針方向旋轉90°后得到的△A3B3C3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知四邊形ABCD中,∠D=∠B90°AE平分∠DAB,CF平分∠DCB

1)若∠DAB72°,∠2   °,∠3   °;

2)求證:AECF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象相交于A、B兩點。

(1)利用圖中的條件,求反比例函數(shù)和一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出一次函數(shù)的值大于反比例函數(shù)的x的取值范圍。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】“一帶一路”讓中國和世界更緊密,“中歐鐵路”為了安全起見在某段鐵路兩旁安置了兩座可旋轉探照燈.如圖1所示,燈A射線從AM開始順時針旋轉至AN便立即回轉,燈B射線從BP開始順時針旋轉至BQ便立即回轉,兩燈不停交叉照射巡視.若燈A轉動的速度是每秒2度,燈B轉動的速度是每秒1度.假定主道路是平行的,即PQMN,且∠BAM:∠BAN=2:1.

(1)填空:∠BAN=_____°;

(2)若燈B射線先轉動30秒,燈A射線才開始轉動,在燈B射線到達BQ之前,A燈轉動幾秒,兩燈的光束互相平行?

(3)如圖2,若兩燈同時轉動,在燈A射線到達AN之前.若射出的光束交于點C,過C作ACD交PQ于點D,且ACD=120°,則在轉動過程中,請?zhí)骄?/span>BAC與BCD的數(shù)量關系是否發(fā)生變化?若不變,請求出其數(shù)量關系;若改變,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD的對角線AC、BD相交于點O,△ABO≌△ADO,下列結論:①ACBD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正確結論的個數(shù)有(

A.1B.2C.3D.4

查看答案和解析>>

同步練習冊答案