【題目】如圖,己知△ABC中,AB=3,AC=4,BC=5,作∠ABC的角平分線交AC于D,以D為圓心,DA為半徑作圓,與射線交于點E、F.有下列結(jié)論: ①△ABC是直角三角形;②⊙D與直線BC相切;③點E是線段BF的黃金分割點;④tan∠CDF=2.
其中正確的結(jié)論有( )
A.4個
B.3個
C.2個
D.1個
【答案】A
【解析】解:∵32+42=52 , ∴AB2+AC2=AB2 ,
∴△ABC是直角三角形,∠BAC=90°,①正確;
作DM⊥BC于M,如圖所示:
∵BD是∠ABC的平分線,
∴DM=DA,
∴⊙D與直線BC相切,
∴②正確;
∵∠BAC=∠DMC=90°,
在Rt△BDM和△BDA中,
,
∴Rt△BDM≌△BDA(HL),
∴MB=AB=3,
∴CM=BC﹣MB=2,
∵∠C=∠C,
∴△CDM∽△CBA,
∴ ,即 ,
解得:DM= ,
∴DF=DE= ,
∴BD= = = ,
∴BE=BD﹣DE= ﹣ ,BF=BD+DF= + ,
∵EF2=9,BFBE=( + )( ﹣ )=9,
∴EF2=BFBE,
∴點E是線段BF的黃金分割點,③正確;
∵tan∠CDF=tan∠ADB= = =2,
∴④正確;
正確的有4個.
故選:A.
【考點精析】通過靈活運用切線的判定定理和黃金分割,掌握切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線;把線段AB分成兩條線段AC,BC(AC>BC),并且使AC是AB和BC的比例中項,叫做把線段AB黃金分割,點C叫做線段AB的黃金分割點,其中AC=0.618AB即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,對角線AC、BD相交于點O,過點D作對角線BD的垂線交BA的延長線于點E.
(1)證明:四邊形ACDE是平行四邊形;
(2)若AC=8,BD=6,求△ADE的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD中,點E、F分別在邊CD、AB上,且DE=BF,∠ECA=∠FCA.
(1)求證:四邊形AFCE是菱形;
(2)若AB=8,BC=4,求菱形AFCE的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某體育老師對自己任教的55名男生進行一百米摸底測試,若規(guī)定男生成績?yōu)?6秒合格,下表是隨機抽取的10名男生分A、B兩組測試的成績與合格標準的差值(比合格標準多的秒數(shù)為正,少的秒數(shù)為負).
A 組 | ﹣1.5 | +1.5 | ﹣1 | ﹣2 | ﹣2 |
B組 | +1 | +3 | ﹣3 | +2 | ﹣3 |
(1)請你估算從55名男生中合格的人數(shù)大約是多少?
(2)通過相關的計算,說明哪個組的成績比較均勻;
(3)至少舉出三條理由說明A組成績好于B組成績,或找出一條理由來說明B組好于A組.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線l1經(jīng)過點E(1,0)和F(5,0),并交y軸于D(0,﹣5);拋物線l2:y=ax2﹣(2a+2)x+3(a≠0),
(1)試求拋物線l1的函數(shù)解析式;
(2)求證:拋物線 l2與x軸一定有兩個不同的交點;
(3)若a=1,拋物線l1、l2頂點分別為、;當x的取值范圍是時,拋物線l1、l2 上的點的縱坐標同時隨橫坐標增大而增大;
(4)若a=1,已知直線MN分別與x軸、l1、l2分別交于點P(m,0)、M、N,且MN∥y軸,當1≤m≤5時,求線段MN的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在△ABC中,點D、E分別在邊AC、BC上(不與點A、B、C重合),點P是直線AB上的任意一點(不與點A、B重合).設∠PDA=x,∠PEB=y,∠DPE=m,∠C=n.
(1)如圖,當點P在線段AB上運動,且n=90°時
①若PD∥BC,PE∥AC,則m=_____;
②若m=50°,求x+y的值.
(2)當點P在直線AB上運動時,直接寫出x、y、m、n之間的數(shù)量關系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【問題情境】
在△ABC中,AB=AC,點P為BC所在直線上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.當P在BC邊上時(如圖1),求證:PD+PE=CF.
圖① 圖② 圖③
證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)
【變式探究】
當點P在CB延長線上時,其余條件不變(如圖3).試探索PD、PE、CF之間的數(shù)量關系并說明理由.
請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:
【結(jié)論運用】
如圖4,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=8,CF=3,求PG+PH的值;
【遷移拓展】
在直角坐標系中.直線l1:y=與直線l2:y=2x+4相交于點A,直線l1、l2與x軸分別交于點B、點C.點P是直線l2上一個動點,若點P到直線l1的距離為1.求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BC=5,AC=12,M為斜邊AB上一動點,過M作MD⊥AC,過M作ME⊥CB于點E,則線段DE的最小值為_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,邊長為10,∠A=60°,順次連接菱形ABCD各邊中點,可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點,可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點,可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去….則四邊形A2B2C2D2的周長是 ;四邊形A2015B2015C2015D2015的周長 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com