【題目】如圖,在平面直角坐標(biāo)系中,反比例函數(shù)y= 的圖象與一次函數(shù)y=ax+b的圖象交于點(diǎn)A(﹣2,3)和點(diǎn)B(m,﹣2).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)直線x=1上有一點(diǎn)P,反比例函數(shù)圖象上有一點(diǎn)Q,若以A、B、P、Q為頂點(diǎn)的四邊形是以AB為邊的平行四邊形,直接寫出點(diǎn)Q的坐標(biāo).
【答案】
(1)
解:∵點(diǎn)A(﹣2,3)在反比例函數(shù)y= 的圖形上,
∴k=﹣2×3=﹣6,
∴反比例函數(shù)的解析式為y=﹣ ,
∵點(diǎn)B在反比例函數(shù)y=﹣ 的圖形上,
∴﹣2m=﹣6,
∴m=3,
∴B(3,﹣2),
∵點(diǎn)A,B在直線y=ax+b的圖象上,
∴ ,
∴ ,
∴一次函數(shù)的解析式為y=﹣x+1
(2)
解:∵以A、B、P、Q為頂點(diǎn)的四邊形是以AB為邊的平行四邊形,
∴AB=PQ,AB∥PQ,
設(shè)直線PQ的解析式為y=﹣x+c,
設(shè)點(diǎn)Q(n,﹣ ),
∴﹣ =﹣n+c,
∴c=n﹣ ,
∴直線PQ的解析式為y=﹣x+n﹣ ,
∴P(1,n﹣ ﹣1),
∴PQ2=(n﹣1)2+(n﹣ ﹣1+ )2=2(n﹣1)2,
∵A(﹣2,3).B(3,﹣2),
∴AB2=50,
∵AB=PQ,
∴50=2(n﹣1)2,
∴n=﹣4或6,
∴Q(﹣4. )或(6,﹣1)
【解析】(1)先利用待定系數(shù)法求出反比例函數(shù)解析式,進(jìn)而求出點(diǎn)B的坐標(biāo),再用待定系數(shù)法求出直線解析式;(2)先判斷出AB=PQ,AB∥PQ,設(shè)出點(diǎn)Q的坐標(biāo),進(jìn)而得出點(diǎn)P的坐標(biāo),即可求出PQ,最后用PQ=AB建立方程即可得出結(jié)論.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)習(xí)有理數(shù)的乘法后,老師給同學(xué)們這樣一道題目:計算:49×(﹣5),看誰算的又快又對,有兩位同學(xué)的解法如下:
小明:原式=﹣×5=﹣=﹣249;
小軍:原式=(49+)×(﹣5)=49×(﹣5)+×(﹣5)=﹣249;
(1)對于以上兩種解法,你認(rèn)為誰的解法較好?
(2)上面的解法對你有何啟發(fā),你認(rèn)為還有更好的方法嗎?如果有,請把它寫出來;
(3)用你認(rèn)為最合適的方法計算:19×(﹣8)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某縣在實(shí)施“村村通”工程中,決定在A、B兩村之間修一條公路,甲、乙兩個工程隊分別從A、B兩村同時開始相向修路,施工期間,甲隊改變了一次修路速度,乙隊因另有任務(wù)提前離開,余下的任務(wù)由甲隊單獨(dú)完成,直到公路修通,甲、乙兩個工程隊各自所修公路的長度y(米)與修路時間x(天)之間的函數(shù)圖象如圖所示.
(1)求甲隊前8天所修公路的長度;
(2)求甲工程隊改變修路速度后y與x之間的函數(shù)關(guān)系式;
(3)求這條公路的總長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2+4x的頂點(diǎn)為A,與x軸分別交于O、B兩點(diǎn),過頂點(diǎn)A分別作AC⊥x軸于點(diǎn)C,AD⊥y軸于點(diǎn)D,連接BD,交AC于點(diǎn)E,則△ADE與△BCE的面積和為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小亮房間窗戶的窗簾如圖1所示,它是由兩個四分之一圓組成(半徑相同)
(1)用代數(shù)式表示窗戶能射進(jìn)陽光的面積是__________.(結(jié)果保留)
(2)當(dāng),時,求窗戶能射進(jìn)陽光的面積是多少?(取)
(3)小亮又設(shè)計了如圖2的窗簾(由一個半圓和兩個四分之一圓組成,半徑相同),請你幫他算一算此時窗戶能射進(jìn)陽光的面積是否更大?如果更大,那么大多少?(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E是邊AB的中點(diǎn),連接DE,△ADE沿DE折疊后得到△FDE,點(diǎn)F在矩形ABCD的內(nèi)部,延長DF交于BC于點(diǎn)G.
(1)求證:FG=BG;
(2)若AB=6,BC=4,求DG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】思考:填空,并探究規(guī)律
如圖1,圖2,OA∥EC,OB∥ED,∠AOB=30°,則圖1中∠CED=_____°;圖2中∠CED=_____°;用一句話概括你發(fā)現(xiàn)的規(guī)律_________________.
應(yīng)用:已知∠AOB=80°,∠CED=x°,OA∥CE,OB∥ED,則x的值為_________(直接寫出答案).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,BC=9,AB的垂直平分線交BC與點(diǎn)M,AC的垂直平分線交BC于點(diǎn)N,則△AMN的周長=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,現(xiàn)有兩點(diǎn)P,Q分別從點(diǎn)A和點(diǎn)C同時出發(fā),沿邊AB,CB向終點(diǎn)B移動.其中點(diǎn)P,Q的速度分別為2cm/s,1cm/s,且當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時,另一點(diǎn)也隨之停止移動.設(shè)P,Q兩點(diǎn)移動時間為x s.
(1)用含x的代數(shù)式表示BQ、BP的長度,并求x的取值范圍.
(2)設(shè)四邊形APQC的面積為y(cm2),求y與x的函數(shù)關(guān)系式?
(3)是否存在這樣的x,使得四邊形APQC的面積是△ABC面積的 ?如果存在,求出x的值;不存在請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com