已知Rt△ABC,直角邊AC、BC的長分別為3cm和4cm,以AC邊所在的直線為軸將△ABC旋轉(zhuǎn)一周,則所圍成的幾何體的側(cè)面積是      .

解析試題分析:先判斷出以AC邊所在的直線為軸將△ABC旋轉(zhuǎn)一周所圍成的幾何體是圓錐,再根據(jù)勾股定理求得斜邊的長,即得圓錐的母線的長,最后根據(jù)圓錐的側(cè)面積公式求解即可.
∵Rt△ABC中,直角邊AC=3cm、BC=4cm

∴所圍成的幾何體的側(cè)面積是.
考點:勾股定理,圓錐的側(cè)面積公式
點評:解題的關(guān)鍵是熟練掌握圓錐的側(cè)面積公式:圓錐的側(cè)面積底面半徑×母線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:RT△ABC與RT△DEF中,∠ACB=∠EDF=90°,∠DEF=45°,EF=8cm,AC=16cm,BC=12cm.現(xiàn)將RT△ABC和RT△DEF按圖1的方式擺放,使點C與點E重合,點B、C(E)、F在同一條直線上,并按如下方式運(yùn)動.
運(yùn)動一:如圖2,△ABC從圖1的位置出發(fā),以1cm/s的速度沿EF方向向右勻速運(yùn)動,DE與AC相交于點Q,當(dāng)點Q與點D重合時暫停運(yùn)動;
運(yùn)動二:在運(yùn)動一的基礎(chǔ)上,如圖3,RT△ABC繞著點C順時針旋轉(zhuǎn),CA與DF交于點Q,CB與DE交于點P,此時點Q在DF上勻速運(yùn)動,速度為
2
cm/s
,當(dāng)QC⊥DF時暫停旋轉(zhuǎn);
運(yùn)動三:在運(yùn)動二的基礎(chǔ)上,如圖4,RT△ABC以1cm/s的速度沿EF向終點F勻速運(yùn)動,直到點C與點F重合時為止.
設(shè)運(yùn)動時間為t(s),中間的暫停不計時,
解答下列問題
(1)在RT△ABC從運(yùn)動一到最后運(yùn)動三結(jié)束時,整個過程共耗時
 
s;
(2)在整個運(yùn)動過程中,設(shè)RT△ABC與RT△DEF的重疊部分的面積為S(cm2),求S與t之間的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;
(3)在整個運(yùn)動過程中,是否存在某一時刻,點Q正好在線段AB的中垂線上,若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•咸豐縣二模)如圖,已知在Rt△ABC中,∠ACB=90°,AB=10,分別以AC、BC為直經(jīng)作半圓,面積分別記為S1、S2,則S1+S2的值等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點,且GF∥BC,AF=2,BG=4.
(1)求梯形BCFG的面積;
(2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動,直到點D與點C重合為止,如圖②.
①若某時段運(yùn)動后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動路程BD的長,并求此時G'B2的值;
②設(shè)運(yùn)動中BD的長度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S.精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年山東青島市八年級下學(xué)期期末考試數(shù)學(xué)卷(帶解析) 題型:解答題

如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點,且GF∥BC,AF=2,BG=4。

(1)求梯形BCFG的面積;
(2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動,直到點D與點C重合為止,如圖②.
①若某時段運(yùn)動后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動路程BD的長,并求此時的值;
②設(shè)運(yùn)動中BD的長度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆山東青島市八年級下學(xué)期期末考試數(shù)學(xué)卷(解析版) 題型:解答題

如圖①,在Rt△ABC中,已知∠A=90°,AB=AC,G、F分別是AB、AC上的兩點,且GF∥BC,AF=2,BG=4。

(1)求梯形BCFG的面積;

(2)有一梯形DEFG與梯形BCFG重合,固定△ABC,將梯形DEFG向右運(yùn)動,直到點D與點C重合為止,如圖②.

 ①若某時段運(yùn)動后形成的四邊形BDG'G中,DG⊥BG',求運(yùn)動路程BD的長,并求此時的值;

②設(shè)運(yùn)動中BD的長度為x,試用含x的代數(shù)式表示出梯形DEFG與Rt△ABC重合部分的面積S。

 

 

查看答案和解析>>

同步練習(xí)冊答案